
Manufacturing
Management

Software

Scripting Guide

Making IT Work

Save Time

Save Money

Improve Performance

Comprehenisve - Proven - Affordable

www.match-it.com

3ContentsScripting Guide

© 2019 Match-IT Limited04 October 2019

Table of Contents

Scripting 5

... 6Lua 1

... 6What is Lua? 1.1

... 6What is a script? 1.2

... 8The Match-IT module 1.3

... 8Accessing files 1.4

... 8Using virtual files 1.5

... 9Accessing fields in files 1.6

... 11Data types 1.7

... 13Accessing defaults 1.8

... 13Accessing registers 1.9

... 13Accessing system globals 1.10

... 13Accessing system constants 1.11

... 13Pre-defined functions 1.12

... 13Register usage conventions 1.13

... 15Useful tools 1.14

... 15Using the console 1.15

... 15Using the debugger 1.16

... 16Example scripts 1.17

... 16Wizard Functions 1.18

... 30Wizard DO Function 1.19

... 32GUILE 2

... 32What is a User Interface? 2.1

... 32How do I create a user interface? 2.2

.. 33Window definition table structure2.2.1

.. 39Ruler format2.2.2

.. 41Callback Interface2.2.3

.. 44Window Layout2.2.4

... 46How do I access properties? 2.3

... 47How do I test a user interface? 2.4

... 48Accounting Software Interfaces 3

... 48How is the interface organised? 3.1

... 49How is the script organised? 3.2

... 51Interface Reference 3.3

... 53Export Table Reference 3.4

... 54Import Table Reference 3.5

... 54Example 3.6

... 55Extending Report Files 4

... 58Product Configurators 5

... 58What is a Product Configurator? 5.1

... 58Why would I use a Product Configurator? 5.2

... 58What happens when I run a product configurator? 5.3

... 58How do I run a product configurator? 5.4

... 59How do I design a product configurator? 5.5

... 60How do I define a look-up table? 5.6

... 61How do I define a product configurator? 5.7

5Scripting Guide

© 2019 Match-IT Limited04 October 2019

Scripting

This section contains reference information that you will find useful if you intend to write or modify Lua scripts.

6Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

1 Lua

This topic describes how to use the scripting language built into Match-IT. The information presented here is
relevant to writing complete scripts to perform some process and also to writing PPS expressions (Parametric
Product Structures) that can be embedded into your methods.

The scripting language used in Match-IT is an extension of Lua. You can read all about standard Lua at
www.lua.org; this document only covers the Match-IT specific extensions. You should familiarise yourself with
Lua before reading this document.

1.1 What is Lua?

Lua is a powerful, light-weight programming language designed for extending applications. Lua is also
frequently used as a general-purpose, stand-alone language. Lua is free software.

For complete information, visit Lua's web site at www.lua.org . For an executive summary, see www.lua.org/
about.html.

Lua has been used in many different projects around the world. For a short list, see www.lua.org/uses.html.

1.2 What is a script?

In Match-IT, Lua scripts can be used in two contexts. They can be used as a PPS expression (Parametric
Product Structure), or as a program to perform some function.

When used as an expression, you enter the expression directly into Match-IT via the expression editor. The
expression becomes ‘embedded’ into a method.

When used as a program, the script is a text file you create using any text editor (e.g. Notepad, we
recommend Notepad++ which can do syntax highlighting and folding, see notepad-plus.sourceforge.net). Once
created they can be run directly or they can be ‘imported’ as a wizard. It's important to note that although the
process is referred to as ‘importing’, it's only the properties that are imported and not the script itself, the script
is ‘linked’ not embedded. This means whenever the wizard is executed, the script file is re-accessed and then
run. So any changes you make to the script take effect immediately and it need not be re-imported. The main
benefit of importing is that the script becomes part of your wizard library and as such can be connected to via
wizard buttons available on many forms and/or turned into a menu button.

When 'importing' a script it's referred to as a template and must conform to a syntax like this:

TemplateFile ::= [LanguageLine] { IgnoredLine } StartLongComment Template
EndLongComment Script

LanguageLine ::= '#lua'

IgnoredLine ::= any line that is not a Template

Template ::= '{{{ TEMPLATE:'
TemplatePrefix,TemplateMnemonic,TemplateName,TemplateClass,Te
mplateUserGroups

[Description]

{ TemplateLine }

'}}}'

TemplateLine ::= Comment | ContextSection | DefaultLine

StartLongComment ::= '--[['

EndLongComment ::= '--]]'

Script ::= See Lua Language Script

Comment ::= '{{{ COMMENT:' [CommentTitle]

7Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

{ TextLine }

'}}}'

ContextSection ::= '{{{ CONTEXT:' [SectionName]

Description

{ DefaultLine }

'}}}'

This is an import section only. It does not exist in the imported
template. It is just a convenient way to visually isolate all the template
defaults in the import script.

DefaultLine ::= 'DEFAULT:' DefaultName,DefaultType[,DefaultValue]

A default line defines a context default for the template. This causes a
qualifier of 'DefaultName' to be attached to the template. The type of
the value is 'DefaultType' and the initial value is 'DefaultValue'.

These qualifiers can be accessed within the template by the normal
field access mechanism using the drSelfTemplate as the reference. For
example:

drh = m.open(match_it.drh) --open file

m.load(drh,m.drSelfTemplate) --load 'self' to

gain access to qualifiers

DefaultOfInterest = drh.DefaultName --if the name is

known to be DefaultName

DefaultOfInterest = drh[DefaultName] --if the name is in

the variable "DefaultName"

...

m.close(drh)

This is a convenient mechanism to group all user tweakable stuff in one
easy to get to place.

Description ::= '{{{ DESCRIPTION:'

{ TextLine | LineBreak } ['[END]' { TextLine }]

'}}}'

The Description forms the text of the confirmation dialog when the
template is run. The confirmation text ends at the description end or
the first line containing the '[END]' marker. If the confirmation text is
blank, no confirmation dialog is shown when the template is run.

All blank lines are ignored. All text following !! on any line is ignored.
This is an end of line comment for use in the import script.

LineBreak ::= '.'
This adds a line break to the description.

There must only be a single Template in the file. All lines beyond the Template are assumed to be the Lua
script. To stop Lua interpreting the Template block, it should be enclosed in a long comment ('--[[' to the
corresponding '--]]').

If the LanguageLine is omitted the system default language is assumed.

See Wizard Functions and Wizard DO Function for the Match-IT specific functions available within Lua. All
these functions, and other facilities, are available through a Lua table called match_it (usually abbreviated to
just 'm').

8Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

1.3 The Match-IT module

In Lua, the entire Match-IT extension is available through a module called 'match_it'. To access this module,
all scripts and PPS expressions must include the line:

m = require('match_it') --load Match-IT into 'm'

This creates a table (called 'm' in the example above) where all functions, constants, etc. are presented as
keys in the table. Unless shown otherwise all names mentioned in this document must be prefixed by the
table name using the usual dot notation, e.g. m.open(mch).

Lua is a case sensitive language, whereas Match-IT is not. Keys in the Match-IT table are added on demand
the first time you use them. When keys are added they are added using whatever case convention you used. If
you are not consistent on case usage, it just results in multiple table entries, one for each case convention.
This is benign but wasteful.

1.4 Accessing files

All the databases within Match-IT are accessible from scripts. You have the same access to the databases
from within scripts as Match-IT itself has. BE WARNED! It is possible to do great damage if your scripts do
not work correctly.

File numbers
All database files are identified by a file number. The first is number 1. You do not need to know these
numbers as each has a mnemonic that is easy to remember. The mnemonics are constant and never change,
whereas the file numbers themselves may change if a new database is added to the system. All these
mnemonics can be found in the reference section. All file mnemonics consist of the three letters you see on
the front of each line in the file list.

In any function that requires a file number as a parameter, it can supplied by just quoting its mnemonic, e.g.
m.mch for the material catalogue.

Field numbers
For each database, each of its fields has a number allocated to it for reference purposes. Like file numbers,
these all have a mnemonic. All the mnemonics for the fields of any file can be found in the reference section. A
list of all field mnemonics is available. In the help topic they are shown as tla:name (i.e. the file mnemonic, a
colon, then the field name). In scripts the colon is dropped. E.g. m.mchBuyable is referring to the Buyable field
in the mch database. There is an extra field that can be accessed from scripts that is not in the on-line help,
that is RecNo. This represents the internally allocated record number. This can only be read, you cannot
assign to it.

In most cases, fields are referenced directly by their name (see Accessing fields in files) without the need for
these mnemonics. A few functions require the field to be referenced by its number (e.g. m.set()), use these
mnemonics for those cases.

Key numbers
For each database, each of its keys (aka indexes) has a number allocated to it for reference purposes. These
also have mnemonics, they too can be found in the reference section. All key mnemonics are of the form
tla:Field1Field2…FieldNKey, where tla is the file mnemonic and Field1…FieldN are the names of the
fields that compose the key in their order of significance. The word Key always appears as a suffix. This
distinguishes them from field mnemonics. As with field numbers, the colon is dropped in scripts. E.g.
m.mchStepMaterialKey is referring to the mch key that is composed of the Step field and the Material field.

1.5 Using virtual files

The term virtual file refers to temporary files that can be created in scripts. They only exist for the duration of
the script and only exist in memory. They are most useful as receptacles for CSV files read in and for ad-hoc
reporting. You can do almost anything with a virtual file that you can on a real file. The main difference is that a

9Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

virtual file must have its fields declared before the file can be used. You do this using the m.field() function
(see later).

The mnemonic for a virtual file number is of the form V##, where ## is a number in the range 01..32, e.g V01,
V02, etc.

The key (index) for a virtual file must also be declared before the file can be scanned in anything other than
physical order. This is done by implication by referencing a key mnemonic for the file. For example, if virtual
file v01 has a field declared of CustomerName, then to create a key on that field, just reference a key (using
the m.set() function) with a name of m.v01CustomerNameKey. Only one key can be defined per file and it can
only consist of a single field. You can emulate multi-field keys programmatically in the script by using a
structured string. Records with null (or empty) keys are not indexed.

Note: It’s more efficient to use an ordinary Lua table if you just need working space, even if that space is very
large.

1.6 Accessing fields in files

To access fields in a database, first you have to declare a file variable that references the file you want to
access, then it must be opened. You do this using the m.file() and m.open() functions, like this:

mch = m.file(m.mch); m.open(mch)

For a virtual file, you must define the fields before the file is opened, like this:

myfile = m.file(m.v01)

m.field(myfile,’My string field’,m.str)

m.field(myfile,’My material’,m.material)

...

m.open(myfile)

Fields in an open file can be referenced by using their name, like this:

oldmanqty = mch.manqty --read a field

mch.manqty = m.measure(‘Metre,2’) –-assign to a field

The fields referenced can be ‘native’ fields or ‘qualifiers’.

Native fields are pre-defined as part of the standard Match-IT databases. A list of ‘native’ field names for each
file is available in the reference section.

Qualifiers are fields added to the database by you and show in the ‘qualifiers’ tab on many forms. They are
accessed in exactly the same way as a native field, e.g:

oldvalue = mch.myfield --read a qualifier

mch.myfield = m.measure(‘Metre,2’) –-assign to a qualifier

WARNING: When you write to a qualifier field, the database is updated immediately. Contrast this to native
fields that are all written at once when you execute m.Create() or m.Update().

Drilling through
You can also access fields in objects that are referenced from some variable without having to declare and
open the file. This is useful for accessing a single field but is very slow (because each access, opens the file,
reads/writes the field, then closes the file again), so is not suitable when a large number of fields are required
to be read or written.

To drill-through, you use the dot notation, like this:

sol = m.file(m.sol); m.open(sol);

... (do something to load a sales line sol)

if sol.OurPartNum.ManQty < m.measure(‘Each,2’) then

 sol.OurPartNum.ManQty = ‘Each,2’

end

This code fragment will update the reference quantity of the material in the sales line to 2 each if the current
reference quantity is less than 2. Note: it’s the MCH that is being updated in this example, not the SOL. We’re
just using the SOL to get at the MCH.

This dot notation can be continued to any depth. In general the syntax is:

10Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

object ‘.’ fieldname { ‘.’ fieldname }

The object must refer to a record in some database.

Direct file buffer access
You can also access fields directly in the file buffer provided the file is open (from within a Lua script or from
the Match-IT context that invoked the Lua script, e.g. PPS). Use a notation like this:

if m.mch.ManQty < m.measure(‘Each,2’) then

 m.mch.ManQty = ‘Each,2’

end

This code fragment will update the reference quantity of the material currently in the file buffer. Only the file
buffer is affected, not the file itself. The file itself must be updated via m.Create() or m.Update() or in the
Match-IT environment the Lua script returns to.

Qualifier 'records'
If your system uses a large number of qualifiers that are intended to be accessed from scripts, it is useful to
group related qualifiers into 'records'. A qualifier 'record' represents all qualifier fields associated with a file that
have a common prefix. A 'prefix' is any part of the name that precedes a dot (.) character. E.g. if you have
qualifiers associated with your materials catalogue with names like this:

· core
· VA
· primary.machine
· primary.wire
· primary.winding1.volts
· secondary.machine
· secondary.wire

Then primary and secondary are considered to be records consisting of the fields machine and wire, etc.
They can be accessed using dot notation like this:

...

mch = m.file(m.mch)

m.open(mch)

m.load(mch,...)

primaries = mch.primary --make a record 'reference'

if primaries.machine == ... --referencing a value (via a record reference)

primaries.wire = ... --assigning a value (via a record reference)

mch.primary.wire = ... --the same assignment (without a record reference)

p1 = primaries.winding1 --a sub-record reference

p1.volts = 220 --and an assignment though it

...

Note the use of assigning a reference to a record (primaries=). This is useful to aid the readability of your
scripts. Note also, that there can be records within records (primary.winding1.volts), to any depth.

Qualifier 'arrays'
The qualifier system can also emulate arrays of records. If the name that follows a dot is entirely numeric, it
can be accessed using the array notation in your scripts. E.g. if you define qualifiers like this:

· primary.1.wire
· primary.2.wire
· ...
· primary.16.wire

Then the wire component of primary can be accessed as an array like this:

...

wire1 = mch.primary[1].wire --get the wire for the first primary

wire2 = mch.primary[2].wire --get the wire for the second primary

...

or, more interestingly, like this:

...

11Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

for winding = 1,16 do

wire = mch.primary[winding].wire

...

end

...

The numeric element can be specified by any expression that evaluates to a number. Array elements, like
Lua, are 1-based, so the first element is number 1. Also, the qualifier name elements for arrays must not start
with a zero, this is to ensure there can be no ambiguity with '01' not being the same as '1', etc.

1.7 Data types

Match-IT has nearly 200 data types. A data type defines what a value of that type can contain and also,
critically, what can be done with it. In your scripts the type of any value must be defined. It can be defined
explicitly or it can be implied from the context. To define the type explicitly, it can be ‘cast’ using one of the
Match-IT type names.

For example, to make a value into a Match-IT string:

stringthing = m.str(someotherthing)

This mechanism can also be used to construct values of specific types from their parts. For example:

somemoney = m.money(‘Sterling,100’)

This will make a Match-IT money type that represents £100. The parameter given to m.money in this case is
the make symbols for the type. NB: The make symbols must be enclosed in quotes if it’s a literal string,
omitting the quotes can lead to strange effects as an undefined value in Lua is interpreted as nil. E.g.:

Fred = 6

areal = m.real(fred)

Here the case of fred is different to Fred, so fred is undefined. This will create a value in areal of 0 not 6.

The data type is implied when dealing with fields in files as each field has a data type associated with it. In this
case an appropriate ‘cast’ is done automatically when you assign to a file field, and the type of any value read
will be that defined for the field.

A list of type names, and their make symbols, for each module is available in the reference section. The
names under the LType column are the names required in your Lua scripts.

Type casting
In general, you can define a data type by a ‘cast’ from a type number (e.g. m.zvMaterial), a type name (e.g.
m.TypeNam(‘Material’)), a file number (e.g. m.mch) or a file name (e.g. m.FileNam(‘mch’)). The latter is
useful when dealing with an owner file, owner record pair from some file. For example:

msc = m.file(m.msc)

…

owner = msc.OwnerFile(msc.OwnerRec)

Here the date type of owner will be whatever is appropriate for the contents of the msc.OwnerFile field and its
value will be whatever was in the msc.OwnerRec field.

Type coercion
When accessing and assigning Match-IT values in your Lua scripts, Match-IT will try to coerce values to an
appropriate type. If the coercion fails, the operation you are attempting will throw an error and the script will
terminate. In most sensible cases the coercion will succeed, for example a number can be considered to be a
boolean in an IF condition.

When dealing purely with Match-IT measures, all the usual rules apply, e.g. 1 metre + 1 foot will do unit
conversions.

When dealing with mixed Match-IT types and Lua types for arithmetic cases, the Lua type will be coerced into
the equivalent Match-IT type and then the operation performed, e.g. 1 metre + 1, the lone ‘1’ will be converted
to a unitless measure and then the addition performed (note: a unitless measure is units compatible with
anything).

12Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

When dealing with mixed Match-IT types and Lua types for comparison cases, no coercion is performed
(due to, IMO, limitations in the Lua language). This means you must specifically coerce comparison operands,
e.g:

limit = 2

test = m.real(1)

if test < limit then ...

Will raise an error, but:

limit = 2

test = m.real(1)

if test < m.real(limit) then ...

Will work as expected.

Equality
Lua considers any non-nil and non-zero value to be true (like C). This in conjunction with the lack of type
coercion when doing comparison operations can lead you into trouble if you are not careful. E.g:

x = m.flag(false)

if x then ...

In the above, x is considered to be true by Lua even though it’s a Match-IT false flag! Here, there is an implicit
== comparison, to make it work properly you must change it into an explicit comparison. E.g:

x = m.flag(false)

if x == m.flag(true) then ...

This will then work as expected.

Another situation to be wary of is testing for equality with mixed Match-IT and Lua types. E.g:

a = m.real(1)

b = 1

if a == b then ...

In the above, Lua considers a to be not equal to b because they are different types. To make this work as
expected, you must again coerce the operands into Match-IT types. E.g.:

a = m.real(1)

b = 1

if a == m.real(b) then ...

This will then work as expected.

Strings
Lua uses the ‘\’ character as the escape character (to denote special values, e.g. \n is the new line
character). You must be wary of this when constructing file names and paths from literals. E.g.:

filename = ‘c:\match_it\configs\welcome.wiz’

This will not create what you want because the \m, \c and \w sequences are interpreted as escape
sequences, so you end up with ‘c:atch_itonfigselcome.wiz’. Instead use the ‘/’ character like this:

filename = ‘c:/match_it/configs/welcome.wiz’

Arithmetic
When doing arithmetic involving a Match-IT data type, the result is always a Match-IT type of the same type as
the first operand. This applies even if the first operand was not initially a Match-IT type. E.g.:

now = m.now()

later = now + 3600

number = 3600 + now

The type of later is a Clock but the type of number is a Real.

13Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

1.8 Accessing defaults

You can access all Match-IT’s defaults in a similar way to fields in files. They appear as fields in the 'm' table.
The ‘field’ name is the same as the defaults’ ID. E.g.:

if m.asActiveTicks < m.int(10000) then --read

m.asActiveTicks = 10000 --write

end

This will set the gone away ticks default to 10,000 if it’s currently less than that. Note that assigning to
defaults in this way just updates the in-memory copy; it is not saved in the database. Use the
m.SetDefault() function to do that.

A list of default IDs, for each module is available in the reference section. The names under the ID column are
the names required in your Lua scripts.

1.9 Accessing registers

Registers are a special set of values that can be passed to your scripts from Match-IT. They typically contain
information pertinent to the context the script is being invoked from. See the Register usage conventions for
details. There are 32 registers, they can contain values of any Match-IT type, and they are named r01 to r32.
To access them, just use their name as a field on the 'm' table, like this:

if m.r01 > m.measure(‘Metre,1’) then ... --read

m.r02 = m.money(‘Sterling,100’) --write

1.10 Accessing system globals

There are a number of context variables maintained by Match-IT that can be useful in scripts, for example the
currently logged-in user. There are mnemonics for most of these that you can use in Lua. The variables
available are all defined in the reference section. They can be accessed for reading (only) as m.GlobalName,
where GlobalName is the name as you see it in the help system.

1.11 Accessing system constants

Many fields and functions in Match-IT require special values that have specific meanings. There are
mnemonics for most of these that you can use in Lua. This means you can refer to these special constant
values by a mnemonic name rather than having to know the specific value. The constants available are all
defined in the reference section. They can be accessed for reading (only) as m.ConstantName, where
ConstantName is the name as you see it in the help system. They are returned as native Lua numbers or
strings.

1.12 Pre-defined functions

The Match-IT extension to Lua adds a large number of functions to the language that give access to many of
Match-IT’s internal facilities. The functions available and what they do are all defined in the reference section
under Wizard Functions.

The functions referenced above only exists for use within a Lua script. There are another set of functions
referred to as ‘drops’ that can also be accessed within Lua scripts. These give access to internal Match-IT
functions.

The additional functions available as ‘drops’ are all defined in the reference section.

1.13 Register usage conventions

There are many places in Match-IT where a script can be invoked from a form or list to perform some function,
for example on the list of customers there are ‘Add’ and ‘Edit’ buttons (when the user interface level is high

enough) that can be attached to a script. In such cases information from the form or list is passed to the script

14Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

in registers (see accessing registers). In addition a special default (drTemplateParam) is set to a value that
represents the operation to be performed.

There is also a mechanism to 'hook' almost all events for almost all controls for almost all windows within the
UI (User Interface). This mechanism allows an expression to be attached to an event that is evaluated
whenever that event is triggered. This is useful to override, or augment, the standard behaviour within a window
for a particular control. These 'hook' expressions are passed context information in registers.

Scripts can also be invoked from your methods to evaluate method elements (e.g. what material to use,
dimensions, etc.). This context is referred to as PPS (Parametric Product Structures).

In all cases the scripts are expected to return a single result that is appropriate to the context. The scripts
return a result using the return statement, e.g:

m = require('match_it')

result = m.material(‘1877’)

return result

Form/list editing
The drTemplateParam default will contain the word ‘Create’ if the required action is to add a new object
(customer record, material record, etc.). It will contain the word ‘Edit’ if the required action is to change an
existing object.

For a ‘Create’ operation, register r01 is empty (actually a m.Void()) and register r02 contains the parent
object if there is one (e.g. the sales order header for a sales order line).

For an ‘Edit’ operation, register r01 will contain the object to be edited and register r02 will contain its parent
(if there is one).

In the case of using scripts to create method lines from the method editor, a method line can have a parent of
a material record or a process library entry, here r02 is the material record and r03 is the process library
entry.

In the case of attaching a script to the design button in the customer part record form, r01 contains the
customer part record.

UI Hooks
When an expression is evaluated for a UI hook, the registers have the following meaning:

r01 The upper case window name invoking the expression.

r02 The upper case control name invoking the expression

r03 The upper case event name that was triggered, or 'ProcedureEntry' when the window is
called, or 'ProcedureExit' when the window exits.

r04 The upper case 'when' name. One of 'pre' or 'post'. 'pre' is called before standard logic
(but after 'sync') and 'post' is called after standard logic (but before 'refresh').

r05 For all events except 'ProcedureExit' this is the LocalRequest value. 1=InsertRecord,
2=ChangeRecord, 3=DeleteRecord, 4=SelectRecord.

For 'ProcedureExit' this is the LocalResponse value. 1=RequestCompleted,
2=RequestCancelled.

r06 The ForceRefresh flag (only meaningful in a 'post' call). When TRUE the standard logic is
calling for a complete re-draw of the window controls and their values.

r07 The keycode active (if any) when the event was triggered.

PPS

15Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

When a script is invoked for a PPS expression, the registers have the following meaning:

r01

r02

r03

The ‘parent’ unit quantity, length and width.

r04 The ‘spec’ object. This is the ‘top’ thing that is creating the demand, e.g. a sales line.

r05 The ‘self’ object. This is either a material record (mch) or a method record (mcb).

r06 The make quantity. This is how much of the parent that is required.

r07 The demand material. This is the material that is required by the ‘spec’ object.

r08 The parent method line (mcb). This is the method record in the parent that is demanding
this item. If the parent is the top, this will be empty.

r09 The ‘parent’ height.

r10 The 'like' root (mcb) or void if not in a LIKE process.

1.14 Useful tools

When you install Match-IT some useful scripts are deposited in your configs folder. Look for files with a .lua
extension in this folder. If you open them in a text editor (e.g. notepad++) they’ll contain comments that
describe their function.

One tool in particular is useful when coding scripts involving showing the user several pages of options, that is
the Pages() function defined in the pages.lua file.

The toCSV(), fromCSV() and CSVreader() functions in the csv.lua file are useful when processing CSV
files.

1.15 Using the console

The console is a useful tool to help you learn to use Lua within Match-IT and also to help debug scripts. The
console is a simple dialog that allows you to type commands and see the results immediately.

The console can be invoked directly from the standard menu via Favourites | Functions | Standing Data
| Wizards | Run a script, this will open a form with an option to start a Lua shell.

It can also be invoked from a script by using the m.console() function.

Any print() commands executed in your script will appear in the console. If the console is not active when
you issue a print() nothing will happen.

1.16 Using the debugger

A simple debugger is available to help diagnose problem in your scripts. To use it add this to your scripts:

require’console’

require’debugger’

Then you can ‘instrument’ your code using the pause() command. After a pause() your script will enter an
interactive session using the console. Type help in that to get a list of facilities available. The debugger is
automatically available if your started the console directly (as above).

You can also break into a running script from the thread viewer (press Threads in the desktop menu bar to
open the thread viewer), select the thread that is running your script and press the Pause button. Your script

will enter an interactive debug session (Note: if your script is currently stalled waiting for a response from a
form; it will not 'pause' until you create some sort of event in the form, like clicking on a field or moving a list
selection).

16Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

1.17 Example scripts

There are a number of Lua scripts installed as part of the Match-IT installation. They are all in the configs
folder with either a .lua extension or a .wiz. If you look in a .wiz file make sure it's not an old legacy script,
they look very different. If you see the marker #!lua in the first line then it’s a Lua script, otherwise it's
probably not.

The sample script ReportSample.wiz is a simple example of using scripts to create a custom report.

1.18 Wizard Functions

This is the complete list of functions available to the Lua Language wizard expressions.

For brevity, the Lua syntax does not show the match_it table prefix. The actual usage in a script will be of the
form match_it.name where name is the function name in this list.

The function name lines are of the form: name(parameters),results where name is the name of the function,
parameters are 0 or more parameters required and results are 0 or 1 or more results returned by the function.
The parameter and result names used here are typically the data type name involved. Parameters enclosed in
[] are optional. The data type of bool represents a native Lua boolean data type and the data type of number
represents a native Lua number, otherwise type names are Match-IT logical types.

Unless the functions explicitly return an error code, any internal error will cause the script to abort. Such errors
can be 'caught' using the pcall function (see the Lua reference manual).

Assign(dObject,sObject)
This function changes the value of the dObject to that of the sObject. The objects must be of the same type.
This differs from a Lua dObject = sObject assign statement in that the Lua assign changes the LType
referenced by dObject to be sObject, i.e after the Lua assign dObject and sObject are references to the same
LType object. The assign operation here preserves the two objects but just makes their value the same.

This is most useful from within callback functions in a GUILE page, where it can be used to change the original
value of controls.

Beep()
This function just makes the system default attention sound.

Bool(A),bool
This function will coerce its operand into a Lua boolean if possible. Note the following for the cases when the
operand (A) is a Match-IT type:

· an empty Str is FALSE, any other Str is TRUE
· an empty RecNo is FALSE, a non-empty RecNo is TRUE
· any numeric type that is 0 is FALSE, else it's TRUE

Call(Template),Object
This function will call the given template. The object returned is the result of the template or 0 if it failed.
Parameters can be passed to and from templates using the GetReg and PutReg functions.

Children(Object,Type),RecNoQ
This function returns a new 'RecNoQ' of all objects of the given type that are referencing the given object. An
'object' is a record in one of the the Match-IT databases. Only child references are returned, use LINKS to find
all non-child references.

Clear(File)
This clears the file buffer for the given file. After calling this function all file buffer fields are empty.

17Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

Close(File)
This function closes a file that has been opened using the Open() function. It always returns a TRUE flag. If
this was a nested open, the context of the outer open is restored to allow subsequent Next() functions to
continue where it left off.

The File must refer to a file variable (see the file function). An outer close does not destroy a virtual file.

All open files are automatically closed when the script stops (for whatever reason).

ComStart(),Depth
Start the Windows COM sub-system. A call to this must be made before any attempt to use COM services in
a script, e.g. those provided via luaCOM. A corresponding ComStop() call should be made just before the
script terminates to turn it off again (although it will be automatically stopped if the script terminates without
doing so). ComStart/Stop calls can be nested. Returns a native Lua number that is the COM start nesting
depth prior to this call (so 0 means it was not started before).

ComStop(),Depth
Stops the Windows COM sub-system. A call to this should be made for each call to ComStart(). The COM
sub-system is only actually stopped by the 'outer' stop call. Returns a native Lua number that is the COM start
nesting depth after this call (so 0 means it is now stopped). Calling ComStop() when it is already stopped is
benign.

Confirm(Message,[MessageName],[WindowTitle],
[OrCancel]),Result
Ask a simple yes/no/cancel question of the user. Returns a native Lua number with a value of gxYes, gxNo or
gxCancel to reflect the user selection. If MessageName is given, it is shown above the Message. If WindowTitle
is not given, then 'Confirm' is used. If OrCancel (a boolean) is given, pressing the Cancel button does not ask

for a further confirmation (use this if your script performs some specific action on cancel). If OrCancel is not
given and the user presses the Cancel button, a further confirmation is asked warning the user the script is

going to terminate and giving them the opportunity to change their mind (use this if your script terminates on
cancel).

Console([options][,pause])
This starts (or re-starts) an interactive console session. If options are given, these are passed to the console
(use '-?' to get the usage). If pause is present and TRUE an 'OK' message is shown before the outer console is
closed. This allows examination of its contents before it disappears.

The console function provides a command line interface where you can type commands and print results to a
console window. It's intended as a debug aid. If you call Console() from within your script you can then use the
debugger to examine variables, try things out, etc. (Use require('debugger') to load a simple debug tool.) The
[console:drRunScriptUI] can also be started directly from Match-IT.

When a console is started (by whatever means), the Lua initialisation string is evaluated before any options
you pass. This is useful to initialise things you want done every time without having to type them.

Note: an options parameter of "-e print('message') -i" is useful when debugging to give you an indication of
where the console was invoked from.

Convert(Measure,Unit[,Date][,Flag]),Measure
Returns the given Measure in the units of the given Unit. This can be used on money and time values as well
as measures (e.g. to convert between currencies). If the optional Date is given it means perform the conversion
for the given date, otherwise it's performed for today. This is significant when converting currencies. If the Flag
is present and TRUE it means be silent about conversion errors. This is useful when probing for conversion
possibilities. A conversion error will return a result of 'undefined' (test by comparing its digits to umInfinity).

Copy(object1),object2

18Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

This creates a copy of the given object. An ordinary assignment of a Match-IT object in Lua creates a new
reference to the same object. This copy function creates a new object that has the same value. The
significance of this is best illustrated with an example.

a = m.measure('Each,1')

b = a

After the above assignments b is a, so changing the value of a will also change the value of b. Whereas,

a = m.measure('Each,1')

b = m.copy(a)

Here, b is a copy of a, so changing a will not affect b.

Cost(Material),Money
This function causes the cost of a material to be (re-)calculated. The Material parameter is an expression that
must evaluate to a material that exists in the catalogue. This function is identical to pushing the 'Re-Cost'
button in the UI. The money figure it comes back with is the unit cost calculated, no setup costs will be
included.

Create(File,[NoValidate]),Object
This function creates the record in the file as constructed in its file buffer. It returns the RecNo of the object
created or aborts if there was an error. The file parameter must refer to a file variable created by the file
function. The file must be open. If a record has been reserved (see the reserve function), then that reserved
record is written, otherwise a new record is written. If NoValidate is present and true, the usual record
validation is by-passed when a reserved record is written (use with caution - it becomes your responsibility to
ensure value rules are not violated).

The Object RecNo is returned in the form of an LType appropriate to the file involved.

CreateCSV(File,PathName,[DoFields]),RecordCount
This function creates a CSV file from the current contents of the given virtual file

· File is a file variable. The file must be closed.
· PathName is the name of the file to create the records in.
· DoFields is a flag that iff TRUE will export the first line as the field list, otherwise the first line is the first

record.

The returned RecordCount is a count of the number of output records created (excluding the field list). It's a
native Lua number.

Delete(File)
Delete the current record in the file.

DestroyVFile(File,[Undeclare])
This function destroys a virtual file and, if undeclare is true, destroys its field declarations too. The file must be
closed. Destroying a virtual file deletes all its records. All virtual files are destroyed when the wizard declaring
them terminates (for whatever reason).

File must refer to a file variable that is a virtual file ID (ie. one of V01..V99).

Digits(Measure),Real
This function extracts the numbers from a measure. E.g. 1.6 from 1.6 Kg. The returned Real is a native Lua
number.

Duplicates(RecNoQ1,RecNoQ2)
This function removes all members from RecNoQ1 that are not also members of RecNoQ2. Both RecNoQs
must be of the same type.

Edit(Object),bool

19Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

This function will bring up the edit form for the 'object' referenced. An editor is typically a tlaView:Up procedure.
It returns TRUE (1) if the user saved, or FALSE (0) if the user cancelled the edit. The editor runs in the same
thread as the template. Template execution is suspended until you close the edit form. (Contrast this with
View.)

Eq(A,B),bool
This is the same as the Lua '==' operator except the operands (A,B) can be mixed Lua and Match-IT types.
This is useful for those cases where you do not know the type of the operands being compared.

Error(Message,[level])
Show the given message and/or terminate the script.

If level is nil or 0, then the user is asked if they want to carry on or abort.

If level is 1 or true, then the message is shown and the script is aborted.

If level is 2, then the script is aborted immediately.

Any other value for level is the same as 0.

When a script is aborted, the last protected function call is terminated, If no protected call is active then the
whole script is terminated.

Note: When terminating, if the Lua start console on error default is set to YES, a console session will be
started. This is useful to diagnose what went wrong. If your script includes a line "require('debugger')" then you
can examine the local variables of the function raising the error.

Exclude(RecNoQ,Member)
This function removes the Member from the RecNoQ.

Exec(Command,[Directory],[IsDocument],[Wait]),ErrorCode
This function will execute an arbitrary command, or open an arbitrary document.

· Command is the command or document name to execute.
· Directory is the working directory to set.
· IsDocument is a flag that if set TRUE indicates a document is to be opened, otherwise a command is

run.
· Wait is a flag that if set TRUE will wait for the command to complete or the document to close, otherwise

the function returns as soon as the document opens.
· ErrorCode will be non-zero if the function failed to run the command or open the document. It's a native

Lua number.

Existing(File[,KeyNo][,Flag]),Object
This function determines if the identified record exists already in the file system. It returns the RecNo of the
object referenced if the record does exist, or 0 otherwise. The referenced record is constructed as if it was
going to be 'created'. The constructed record is then checked for a duplicate in the file system. A 'duplicate'
means at least one key is the same. Note: This does not mean that all fields are the same.

The Object RecNo is returned in the form of an LType appropriate to the file involved.

The file must be open. If KeyNo is not given, then all keys are checked, otherwise just the specified key is
checked (in which case only its key fields need be set in the file buffer). If Flag is present and TRUE it means
check for the existence of any record with the key set, if not present or FALSE it means check if a duplicate
key would be posted if an 'add' or 'put' was attempted. This applies to keys that do not tolerate duplicates.

Field(File,FieldName,FieldType),FieldNo
This function declares a field in a virtual file. The File must refer to a file variable that is a virtual file. It creates a
field with name FieldName and type FieldType. Once created the field name persists until the file declaration is
destroyed. The field can be referenced in the conventional way.

20Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

The function returns the field number it was given. It's a native Lua number.

FieldExists(File,FieldName[,Mode]),bool
This function determines if the identified field actually exists. It returns TRUE (1) if the field does exist, or
FALSE (0) otherwise.

This is only meaningful when applied to fields that are defined as qualifiers. Fields defined as part of the native
file record always exist.

The Mode parameter specifies:

· 0(default) = look for the name on the object, if it does not exist there look in its context, if it does not
exist there look for its default

· 1 = do not look for its default
· 2 = only look on the object itself

File(FileNo),FileRef
This function creates a file variable and associates it with the file buffer identified by FileNo. Fields in the file
buffer can then be accessed by indexing the file variable. E.g.

mch = m.file(match_it.mch)

mch.name = 'a material name' --updates the field

mypart = mch.material --reads the field

FileOf(Object),FileNo
This function extracts the file number associated with the given object. If the object does not represent a
record in a file then a file number of 0 is returned.

This function is useful when using operations that require a FileNo/RecNo pair as parameters. E.g. if 'thing' is
some object in your script then:

FileOf(Thing),Thing

is the FileNo/RecNo pair representing that object.

Find(File,[KeyNo],[FieldNo],[TypeNo]),RecNoQ
This function performs a Set(File,KeyNo,FieldNo), then performs Next()'s until the whole file has been scanned,
placing each object found in the new RecNoQ. The file must be open, and the appropriate key fields populated.
See set for an explanation of the significance of the KeyNo and FieldNo parameters.

When no TypeNo is given the LType of the RecNoQ entries will be that implied by the file being accessed. In
cases where this is ambiguous (because the file has several types), the TypeNo can be specified as the type
to use. It must be appropriate.

FindMaterial(Class[,Field1Name,Value1][,Field2Name,Value2]
[,Field3Name,Value3][,CompareOp]),Material
This searches the material catalogue for a material with up to 3 fields (native or qualifier) that meet the given
search criteria. It returns the Material found or a void if none where found. If more than one field is given, the
match is an 'AND' of all the fields given. The CompareOp only applies to the last field. Other fields (if given) are
always matched exactly.

The search criteria is defined by the parameters as:

· Class - defines the stock class of the materials to be searched
· Field#Name - defines the field names to look for
· Value# - an 'expression' that evaluates to the value to look for
· CompareOp - defines the type of test to apply to candidates

The possibilities for CompareOp are:

· drFindAbove = find the material whose field value is above or equal the given value by the smallest margin
· drFindBelow = find the material whose field value is below or equal the given value by the smallest margin
· drFindExact = find the material whose field value is exactly the given value (implied if CompareOp

21Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

omitted)

A CompareOp of drFindAbove or drFindBelow is only valid when the field is a measure.

Hint: To find the first available material of a class, just provide the class and no fields.

FreeQ(RecNoQ)
This function frees the RecNoQ. This releases the memory it's using. The RecNoQ cannot be referenced after
a FreeQ() operation. To do so will cause an evaluation error. The function returns a void RecNoQ. If a void
RecNoQ is given to FreeQ it has no effect.

Get(FileRef,KeyNo,[NoWatch]),Object
This function reads the first record from the File that matches the given KeyNo. The fields of the key must have
been set in the file buffer. The file must be open.

If Watch is TRUE, the record is read ready for a subsequent update. If an attempt is made to update the record
without this, an error will be raised.

The result is an object of an LType that embeds a RecNo from the file read. If a record containing the required
key does not exist then nil is returned.

Include(RecNoQ,Member)
This function adds the Member to the RecNoQ if it's not there already. If member was already present the
function has no effect.

Item(RecNoQ,Number),Object
This function returns the Number'th object from the given RecNoQ.

Items(RecNoQ),Count
This function returns a count of the number of members in the given RecNoQ. It's a native Lua number.

Join(RecNoQ1,RecNoQ2)
This function adds all the unique members of RecNoQ2 to RecNoQ1. The given RecNoQs must be for the
same type.

KillState()
This function marks the Lua state the script is running in for 'demolition'. This means the Lua state will be
completely closed and destroyed when the script terminates. If this function is not called and the script
terminates without error, then the Lua state is kept in a state pool for re-use later. This considerably speeds up
the execution of scripts, particularly where the same script is called repeatedly (e.g. when used for PPS
expressions).

KodeClass(Kode),KClass
This function extracts the class from a Kode. The class of a kode can usually be determined even if the kode
is empty (i.e. has no instance).

KodeFirst(ClassName),KClass
This function returns the first instance of a Kode with the given class name. This is usually the class record.
Note: This function returns its result a KClass not a Kode. To turn it into a Kode use a form like k =
m.KodeMake(nil,KodeFirst(ClassName)).

KodeInstance(Kode),KInst
This function extracts the instance from a Kode. If the Kode is empty the instance is empty (i.e. a void).

KodeMake(KClass,KInst),Kode

22Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

This function constructs a Kode from its parts. If KInst is null, an empty Kode of the given KClass is created. If
both are null, an anonymous Kode is created.

Le(A,B),bool
This is the same as the Lua '<=' operator except the operands (A,B) can be mixed Lua and Match-IT types.
This is useful for those cases where you do not know the type of the operands being compared.

Links(Object,Type),RecNoQ
This function returns a new 'RecNoQ' of all objects of the given type that are referencing the given object. An
'object' is a record in one of the the Match-IT databases. Only non-child references are returned, use
CHILDREN to find all child references.

Load(File,Object,[Watch])
This function reads the record from the File for the record defined by the Object. The Object must represent a
RecNo in some file. The file must be open.

If Watch is TRUE, the record is loaded ready for a subsequent update. If an attempt is made to update the
record without this, an error will be raised.

Attempting to load a record that does not exist will throw an error and the script will abort unless the error is
caught using a 'pcall' (see the Lua language reference manual).

LoadCSV(File,PathName,[IgnoreLine1]),RecordCount
This function loads all the records of a CSV file into the given virtual file. The virtual file is emptied first.

· File must refer to a file variable that is a virtual file.
· PathName is the name of the file to load the records from.
· IgnoreLine1 is a flag that iff TRUE will ignore the first line of the CSV file (assumed to be a field name

list).

The returned RecordCount is a count of the number of records loaded. It's a native Lua number.

Lookup(Class,Dimension1,Dimension2,Field,[AllowNil],
[NoMake]),Value
This looks up a value in the 2D 'dependence' table. If the addressed item is not present in the table, the user is
asked to define it on the spot unless NoMake is asserted. It is placed in the table for future reference.

The lookup is directed by the parameters as:

· Class = the lookup table class code to look in
· Dimension1 = the 'object' to form the first 'dimension' in the lookup
· Dimension2 = ditto for the second dimension
· Field = a qualifier name to lookup

The function returns the value of the qualifier addressed if it exists. If it does not exist an error is thrown unless
AllowNil is asserted, in which case the function returns a void().

Lt(A,B),bool
This is the same as the Lua '<' operator except the operands (A,B) can be mixed Lua and Match-IT types. This
is useful for those cases where you do not know the type of the operands being compared.

Make(Unit,Real),Measure
This function constructs a Measure from its parts. The following identity holds: Make(Units(A),Digits(A)) == A

Member(RecNoQ,Member),bool
This function returns TRUE iff the given member exists in the given RecNoQ.

23Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

Members(RecNoQ),Function
This function creates an iterator function that can be used to traverse a RecNoQ. Typical usage is this

for item in members(RecNoQ) do

 ... whatever

end

Message(msg,[title],[delay])
Show a gxMessage. msg is the message to show. title is the message title or nil. delay is the maximum time
to wait for a response (in seconds), 0 or nil means forever.

MonitorStart(Title),bool
This function starts a monitor session with the given title. It returns TRUE iff the session started successfully.
This function is only allowed in the context of executing a wizard, it cannot be used by isolated expressions
(e.g. a PPS expression). Monitor sessions are automatically stopped when the wizard completes. Nested
starts are permitted.

This function will terminate the script if the monitor cannot be started. Thus it always returns TRUE.

MonitorStep([Message][,StopOnInterrupt]),bool
This function issues a monitor step message. It returns (a native bool) TRUE if the user is asking to interrupt
the operation and FALSE otherwise. The function is a no-op, returning FALSE, unless a monitor session is
active (by whatever means).

If StopOnInterrupt is present and true, the script will be terminated if the user cancels the operation, otherwise
the function will return false.

MonitorStop()
This function stops a monitor session started by a previous call to MonitorStart. It always returns TRUE. If no
sesion was active then nothing happens.

NewQ(Type),RecNoQ
This function creates a new empty RecNoQ that can contain objects of the given type.

Next(File),Object
This function finds the next (or first) record in the scan defined by the associated Open() (or Set()) function. It
returns the RecNo of the record found or 0 otherwise. The RecNo is returned in the form of an LType
appropriate to the file (e.g. a Material for the MCH file).

The file must refer to a file variable and the file must be open and have been set to an appropriate key.

NextMaterial(MaterialGroup,PreviousMaterial),NextMaterial
This function finds the next, or first, material that is a member of the given MaterialGroup. If PreviousMaterial is
Void(), the first member is found. Otherwise the next member after the one given is found. The one given is
usually the result of some previous call to this function. If there are no more members, then NextMaterial is
returned as a Void().

NextResource(ResourceGroup,PreviousResource),NextResour
ce
This function finds the next, or first, resource that is a member of the given ResourceGroup. If
PreviousResource is Void(), the first member is found. Otherwise the next member after the one given is found.
The one given is usually the result of some previous call to this function. If there are no more members, then
NextResource is returned as a Void().

Normalise(Material,Quantity,[Length],[Width],[Height]),Measure

24Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

This function takes an 'abstracted' quantity of a material and converts it into the reference quantity units for the
material. For 0D materials this is just a units conversion (e.g. Grams to Kilos). For 1D and 2D materials it may
involve de-abstracting. E.g. for a 1D material of Bars of 3 Metres, a quantity of 10.5 Metres will be converted to
3.5 Bars.

The result is the Measure returned. If no normalisation is possible, the returned measure will have the value of
Undefined.

Now(),Clock
This function returns the current time.

Time is represented as centi-seconds since midnight. You can perform arithmetic on time. E.g. adding 6000 to
a time will advance it by 1 minute, and subtracting 3000 will take it back 30 seconds. The behaviour of a time
less than 0 is undefined. 0 itself is interpreted as 'no time'.

Number(A),number
This function will coerce its operand into a native Lua number if possible.

Open(File)
Open the given file. File must refer to a file variable. Opens may be nested with no loss of context provided
each is matched with a close.

This does not do a Set() on the file. You must explicitly set a key using the set function.

Pack(object),RawValue
This function returns the raw value of the object as a native Lua string. NB: The string will contain binary data,
including nulls. Use string.byte(s,i).. to look at it. This function can be used when passing values to functions
that require arbitrary typed values in their packed form (e.g. qaMakeField).

Page(PageTable),ReturnCode
This function creates user interface (UI) pages that display information and/or ask questions (prompts). See
the GUILE manual for details on the usage of this function.

Parents(RecNoQ),RecNoQ
This function translates all the members of RecNoQ into their parents. A 'parent' of an object is the object it is
attached to in the database. For example, the parent of a sales order line is its sales order header.

NOTE: The 'type' of the RecNoQ is changed by this operation.

Path([FileName]),FullPath
When a FileName is given, the function returns the fully expanded pathname for the file. A relative FileName is
interpreted as being relative to the folder that Match-IT was started in (this may not be the same as the current
path). If the FileName contains %registry% elements, that element is replaced by the location of the Match-IT
registry.

If the FileName is enclosed in colons (:), it has special meaning as follows:

:cwd: = return the current working directory

:appdata: = return the user's application data path

When a FileName is not given, the function returns the folder in which Match-IT was started.

The returned path is a native Lua string.

Populate(File[,NoClear])
This populates the file buffer for the given file with its default values. Unless NoClear is TRUE the file buffer is

25Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

cleared first (see Clear() above).

Previous(File),Object
This function finds the previous (or last) record in the scan defined by the associated Open() function. It returns
the RecNo of the record found or 0 otherwise. The RecNo is returned in the form of an LType appropriate to the
file (e.g. a Material for the MCH file).

The file must refer to a file variable and the file must be open and have been set to an appropriate key.

Prop(Control,Property),Value

Prop(Control,Property,Value)
This function reads (first form) or writes (second form) properties associated with controls on pages
constructed using the page function. See the GUILE manual for details on the usage of this function.

Remove(RecNoQ1,RecNoQ2)
This function removes all the members of RecNoQ2 from RecNoQ1. Both RecNoQs must be of the same type.

Reserve(File,[Parent]),Object
This function must be called prior to a Create() to allocate a record in the file. If the record is a child of some
parent (e.g. a sales line is a child of the associated sales order), then Parent must be an object that
represents the parent. Parent can be omitted only iff the record is not a [CHILD]. The 'parent' is ignored for non
[CHILD] records. The function returns the RecNo allocated (as an approp LType).

Round(Measure,Order),Measure
This function will round the given measure to the power of ten defined by the order parameter. E.g.
Round(101.12,1) will yield 101, Round(101.12,10) will yield 100, Round(101.12,.1) will yield 101.1, etc.

Run(Process,[Param1],[Param2])
This function performs the same action as a ribbon menu button. It will run the indicated process and pass it
Param1 and Param2 as parameters. If either Param1 or Param2 is not required use the Void() function in its
place.

The Process must refer to a menu runnable process. Param1 and Param2 must evaluate to something
appropriate to the process referenced.

ScaleFactor(TargetQty,Quantity,[Length],[Width],[Height],
[Weight]),Real
TargetQty, Quantity, Length, Width, Height and Weight are measures.

This function determines how many items are implied by the TargetQty. If Length is 0, the items are assumed
to be 0D (descrete things). If Length is not 0 and Width is 0, the items are assumed to be 1D (rods, bars,
liquids, etc.). If Length is not 0 and Width is not 0, the items are assumed to be 2D (sheets, panels, etc.). The
TargetQty can be expressed in the units of Quantity, or Length or Weight or Area (Length*Width). The function
returns how many items are required to make the TargetQty. For 1D and 2D cases, this might not be a whole
number. If it cannot be determined, due to missing conversions, 0 is returned. This can be exploited to test for
the existance of conversions.

The returned Real is a native Lua number.

Select(OldSelection,[Title],[Protected],[Context]),NewSelection
Brings up the selector for the object implied by OldSelection and allows a new selection to be made.

Selected(RecNoQ),Object

26Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

This function returns the currently selected object from the given RecNoQ. An object is selected by any of: a
Filter iteration, user selection (when the RecNoQ is a prompt).

SelfScript(),ScriptFileName
This function returns the name of the last script run on this thread by drLuaRunScript. For scripts started via
ThreadStart() this will be the script name given to ThreadStart(). For scripts started from the Match-IT UI, it will
be the name of the script so started. The script name returned is a native Lua string.

Set(File,[KeyNo],[FieldNo],[Limit])
This functions sets the key that a subsequent Next() or Previous() will use. KeyNo defines the key to be used,
omitted means scan in physical order. FieldNo defines the field to fix on, omitted means no fix field. Limit sets
the maximum number of records to SELECT, omitted means no limit. The file buffer must have been populated
with the appropriate key field values.

SetDefault(DefaultName,Value,[Object])
All parameters are arbitrary expressions.

If an object is not given it sets the system default to the value given. If an object is given, it sets the instance
default for that object (use this form to set, for e.g., customer specific defaults).

The default name must be the system name of the default. This can be found by looking at the Detail of the
default in the System Defaults list.

The default is set in memory and in the database. This means the default value will remain in force even if
Match-IT is shut-down and re-started.

SetPath(NewPath),OldPath
Set the current working directory to NewPath and return what it used to be (as a native Lua string).

SetVFile(File,PropertyName,PropertyValue)
This function sets a property of a Virtual File. A virtual file is a memory (only) based structure that behaves like
a real file. They are intended to be useful in constructing arbitrary lists. All wizard functions that accept file
objects as parameters can accept a virtual file, e.g. View.

The File parameter must refer to a file variable. The PropertyName defines the property that is to be set. It
must be one of 'Name' to set a logical name for the file; 'Title' to set a display title when viewing; 'Description' to
set a description when viewing. The PropertyValue is the value of the property to set.

ShortPath(LongPath),ShortPath
Return the short name for the given filename. The short name is the equivalent file name in DOS 8.3 format.
The given filename must exist and be accessable. If the filename is already in its short form it's just returned
unaltered. The returned short name is a native Lua string.

Signal(ThreadName),bool
This function sends a 'signal' to the thread identified by 'ThreadName'. The function returns TRUE (as a native
Lua boolean) if the signal was sent, or FALSE otherwise (which means the thread does not exist). It's an
interface to ztSignal() and can be used to terminate an m.wait() call in some other Lua thread.

String(A),string
This function will coerce its operand into a native Lua string. Note: any Match-IT type that is an object will
translate into its name.

Symbols(A),string
This function will translate its operand into a native Lua string containing its symbols. The symbols of an object
are a comma separated list of components that can be used to reconstruct the object. E.g. for a measure of 2

27Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

metres, its symbols are: Metre,2. This is useful when exporting fields to some file that you want to import
again. Such symbols can be blindly assigned to a file field and they will be re-constructed into the proper value
for the field.

ThreadGet(),Object
This function waits for and gets a message sent to this thread. The message can consist of any LType value. If
no message is available the thread will stall until one is. Use the ThreadReady() function to determine if a
message is available before calling this function. Use the Type() function to determine the type of object
received.

ThreadName(),Name
This function returns the name of this thread. If this thread was not started by the ThreadStart() function it
returns nil. Otherwise it returns the name of the thread as returned by ThreadStart(). This can be used in
'generic' scripts to determine if it is running as the parent or one of its children. The returned name is a native
Lua string.

ThreadPut(ThreadName,Object)
This function sends a message to the thread identified by ThreadName. The message sent is the value of the
LType identified by Object. Messages are added to a queue for the destination thread. The sending thread
does not stall.

ThreadReady(),bool
This function determines if a message is ready to be read from the message queue for this thread. It returns (a
native Lua) 'true' if there is or nil otherwise. Use ThreadGet() to retrieve the message.

ThreadRelock()
This should be called immediately after calling some 3rd party library that contains its own windows message
loop (e.g. IUP).

ThreadRunning(ThreadName),bool
This function determines if the identified thread is running. The thread is identified by the name returned by
ThreadStart(). If the thread is running the function returns (a native Lua) true, otherwise it returns nil.

ThreadSleep(SleepTime)
This function puts the calling thread to sleep for SleepTime centiseconds. During this time other threads may
execute.

ThreadStart(ScriptFileName,ThreadName),ThreadName
This function starts a new thread, gives it the name ThreadName and attempts to execute the script specified
by ScriptFileName. The thread terminates when the script terminates. The thread runs in its own independent
Lua state and runs indepedently of the starting parent thread. In particular, the child thread will continue to run
even if the parent thread terminates. Threads can communicate values of any LType using the ThreadGet() and
ThreadPut() functions. The function returns the name of the thread started as a native Lua string.

ThreadUnlock()
This should be called immediately before calling some 3rd party library that contains its own windows
message loop (e.g. IUP). A call to ThreadRelock() should be made immedaitely on return from the 3rd party
library. While a thread is un-locked, the script must not call any native Clarion run-time library functions, in
particular it must not call any UI functions. If the library calls a 'call-back' function into your script and that
function requires access to the Clarion RTL, it must temporarily re-lock and un-lock the thread while it does it.

Today(),Date

28Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

This function returns the current date.

Dates are held as a day number from a (historical) reference date. Adding a number to a date advances the
date by that number of days. Subtracting a number moves the date back by that number of days.

ToType(Object,LuaTypeName),NativeThing
Convert a Match-IT LType value into the equivalent native Lua value if possible. If not the result is nil.

TransAbort(Cause),ErrorCode
This function will explicitly abort the current transaction. All file write actions from here on, up to the TransEnd
will be ignored. When the TransEnd function is executed, the whole transaction will be discarded. The error
message shown at the TransEnd will be whatever was set by the Cause given to this function. The ErrorCode
returned is the error that will be shown when the transaction ends. In Lua, it's a native Lua number.

TransAborted()
This function returns the error code associated with the current transaction. If the current transaction has been
aborted, implicitly or explicitly, an error code will be returned. If there is no error, 0 is returned. It's a native Lua
number.

NB: Lua does not interpret 0 as false, so do this: if m.TransAborted() ~= 0 then... and not if
m.TransAborted() then...

TransBegin(),ErrorCode
This function initiates the current transaction. It returns an error code or 0 if successful. In Lua, it's a native Lua
number. Every file that is going to be written to in the tranaction, either explicitly or implicitly, must have first
been included. If a file write is attempted without first performing a TransInclude, the transaction will abort with
an error when the TransEnd is performed. A TransPrepare must have already been performed.

TransEnd(Silent),ErrorCode
This function terminates the current transaction. It returns an error code or 0 if successful. It's a native Lua
number. A TransPrepare, TransInclude(s) and a TransBegin must have already been performed. All the file
write actions performed since the TransBegin function are either committed or discarded by this function. If any
error was detected, or the transaction was explicitly aborted, the file write actions will be discarded. Otherwise
the actions are committed and the Match-IT databases are updated all at once. At the end of this function,
either all the actions will be done or none of them. If the Silent option is given and set to true, then no error
message is shown, otherwise an error message is shown if the transaction failed.

TransFast(),Depth
This function puts the transaction system into {\i fast} mode. In this mode transactions are not atomic and an
error during a transaction could leave the file system in an inconsistent state. BEWARE! For every call to
TransFast there must be a corresponding call to TransSafe. The TransFast function is intended to be used
during complex import operations and in a context where you know how to recover should it fail. In fast mode
transaction performance is improved because records are not flushed to the disk immediately, they are saved
in memory and flushed en-masse every now and then. I.e. fast but very dangerous. USE WITH CAUTION.

The Depth returned is the fast nesting depth. It's a native Lua number.

TransInclude(FileRef,[AccessType],[Object]),ErrorCode

TransInclude(FileNo,[AccessType],[Object]),ErrorCode
This function adds the given file to the current transaction. It returns an error code or 0 if successful. It's a
native Lua number. Every file that is going to be written to in the transaction, either explicitly or implicitly, must
be included between the TransPrepare and the TranBegin. If a file write is attempted without first performing a
TransInclude, the transaction will abort with an error when the TransEnd is performed. A TransPrepare must
have already been performed.

29Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

The file must be specified by an open FileRef (as returned by the File function) or a FileNo. The latter form is
useful when the script must include the file but does not access the file buffer directly.

AccessType defines the action that will be done on the file. Possibilities are:

· (B)are - just do a bare trInclude
· (C)reate - records are going to be added to the file
· (U)pdate - records are going to be updated
· (D)elete - records are going to be deleted

They are defined by a string containing the above ()'d characters. If omitted 'CUD' is assumed.

Object defines the object that is going to be deleted. If present the files necessary to delete that record are
auto included. If not present then all files that could possibly have a reference to the file are auto included. If
the Object is a FileNo then the record currently in the file buffer is to be deleted. Object is ignored for access
types other than delete.

TransPrepare(Title),ErrorCode
This function prepares a new transaction with the given title. It returns an error code or 0 if successful. In Lua,
it's a native Lua number. Transactions are automatically ended when the script completes. Nested prepares
are permitted provided each is bracketed by a corresponding TransEnd.

No user interaction is allowed between a TransPrepare/TransEnd pair. Performing functions that result in user
interaction, either directly or indirectly, will have an undefined, and propably undesirable, effect.

There is a protocol to using the 'Trans' functions. A transaction is a set of file write actions that are to be
performed atomically (i.e. all or nothing). Transactions are also much faster than 'one at a time' file write
actions. The protocol is:

1. TransPrepare
2. TransInclude for each file that is to be written to (including implied writes)
3. TransBegin
4. (the file write actions as required)
5. TransEnd

Failure to follow this protocol will result in an error and the script will terminate.

TransSafe(),Depth
This function must be called subsequent to every call to TransFast to restore the transaction system to its
usual safe mode. Safe mode is restored automatically when the wizard terminates (for whatever reason) but
you should not rely on this, as other threads cannot perform normal transactions while the transaction system
is in fast mode.

The Depth returned is the fast mode nesting depth remaining. It's a native Lua number.

Type(Object,[no-coercion]),Name
This function returns the Match-IT name for the type of the object given as a native Lua string. If the no-
coercion option is present and TRUE, then the name returned for a non-Match-IT object will be blank,
otherwise the name of the nearest equivalent Match-IT type will be returned. E.g. a Lua Boolean will return a
name of Flag when coercing or blank when not (NB: It returns an empty name, not nil).

TypeOf(Object),TypeNo
This function extracts the type number associated with the given object.

Units(Measure),Unit
This function extracts the units from a measure. E.g. Kilo from 1.6 Kg.

UnPack(RawValue,type),Object
Turns a raw packed value into an object of the given type. The raw packed value should be the result of some
previous pack(object) call. The raw packed value is assumed to be appropriate to the type being created. NO

30Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

CHECKING IS PERFORMED. It's is assumed you know what you are doing if you use this function.

One semi-legitimate use is:

RecNo = m.unpack(m.pack(m.int(1234)),m.Material)

This will create a material object referencing record number 1234 (whatever that might be). Sometimes useful
for performing data recovery exercises when you know the RecNo's involved from somewhere else.

Unreserve(File)
This undoes the effect of the last {\i reserve} if the record is not going to be created. Unreserve is not required
if Create() is performed on the file.

Update(File,[NoValidate]),Object
Update the current record (only) for the given file. The file parameter must refer to a file variable created by the
file function. The file must be open. The Object RecNo is returned in the form of an LType appropriate to the file
involved. If NoValidate is present and true, the usual record validation is by-passed when the record is updated
(use with caution - it becomes your responsibility to ensure value rules are not violated).

Validate(File),bool
This function will validate the record implied by the File. The function returns a TRUE flag (1) if the validation is
successful, or FALSE if not. Validation is automatic when a record is Created or Updated (unless inhibited). If
the validation fails the user is shown an error message.

View(Object)
This function will bring up the viewer browse for the 'object' referenced. A viewer is typically a tlaView
procedure. It always returns TRUE. A viewer called up like this runs in a separate thread. It will continue to run
even after the template finishes unless you explicitly close it. (Contrast this with Edit.)

ViewVFile(File),Object
This function displays the current contents of a virtual file. The current file position will be selected. The
returned Object is the record selected from the list. The File must refer to a file variable for a virtual file.

Void(),Void
This function just returns a Void LType. This can be used for functions that require parameters and you don't
want to give it one. A Void() can stand for anything. It's a 'god' - hands out anything you want.

Wait([TimeLimit]),ThreadName
This function waits for either the specified amount of time or until it receives a signal. It's an interface to
ztWait(). It returns the ThreadName (as a native Lua string) of the signal sender if it got a signal or nil if it just
timed out. If no time limit is given it'll wait forever (not a good idea!).

Watch(File)
Watch() must be called prior to a Load/Next/Previous if a subsequent update is expected. Watch() is implied
when in a transaction.

1.19 Wizard DO Function

The DO operation is one of the functions that can be used within wizard expressions. It's not a function in the
normal sense, but rather it provides access to internal services exposed to Lua.

The normal function call syntax in Lua is used where the function name is one of the operations identified in
the Processes and Operations list.

The number and type of parameters is dependent on the operation. There may be up to 24. Each may be an
input parameter or an output parameter.

31Scripting Guide Lua

© 2019 Match-IT Limited04 October 2019

In Lua scripts, a DO function returning an error will cause an error to be thrown and the script will terminate
(unless you catch the error in your script using pcall or xpcall).

The operations available, their syntax and semantics, is defined under the DO Operations topic in the help file
for each system module, e.g. DO Operations in the Material Stock module. In those descriptions the
parameters are identified by quoting the logical type name that is expected, preceeded by either a '+' symbol
or a '-' symbol. When preceeded by a '+' it indicates the parameter is an input parameter (i.e. passed to the
function). When preceeded by a '-' symbol it indicates the parameter is an output parameter (i.e. the function
passes it out as a result). Sometimes a '-' parameter can be both an input and an output.

Its Lua usage syntax is:

R1,...,R24 = match_it.operation(P1,...,P24)

The operation is the name of the function. In Lua, the syntax of the call of a DO function is the same as any
other function. Only the output parameters (if any) of the function called are returned as results (R1..R24). The
passed parameters (P1..P24) may be omitted or nil, in which case an 'empty' value of the appropriate type is
passed to the function. If an output parameter is given in the parameter list (P1..P24) then it supplies an initial
value for the output to the function.

32Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

2 GUILE

This section describes how to create user interfaces from Lua scripts using the GUILE system.

GUILE is an acronym for: Graphical User Interface Lua Extension.

2.1 What is a User Interface?

The term user interface in this context refers to a Lua script asking questions of a user and/or presenting
information to a user. A user interface can be as simple as asking for confirmation to perform an action or as
complex as a product configurator asking for many specification elements.

The welcome wizard you saw when you first installed Match-IT contains a simple user interface asking for
various setup options.

Almost anything you see in a built-in Match-IT window can also be done in a window created by GUILE
(GUILE is the name used to refer to the facilities described in this manual).

2.2 How do I create a user interface?

User interfaces are created using the page() function available from Lua scripts. This function takes a
parameter that is a Lua table containing the interface definition (referred to as a window) and an optional
boolean value that specifies if the window is to be previewed or run (more on that later).

Here is a very simple window definition that just asks the user to pick a material:

--make a selection

materialPrompt={text='Material',value=m.Material()}

m.page{title='Pick a material',name='Make Selections',prompts={materialPrompt}}

m.message('You selected '..materialPrompt.value)

And this is what the window this creates will look like:

Executing the m.page() function draws the window and waits for a user response. When the user presses the
Finish button, the m.page() function returns to your script and, in this example, materialPrompt.value will

contain whatever material the user selected from your catalogue.

Here’s a more interesting example that partly mimics the built-in materials selector:

--browse a list

mch=m.file(m.mch);m.open(mch)

mch.Archived=false

m.page{title='Materials By Location',

 name='',

 nohints=true,noback=true,nonext=true,

 prompts={

 {file=mch,

 vsize=18,

 list={

 {data='homelocation',width=32,},

 {data='material',width=32,},

 },

 keys={

 {key=m.mchArchivedHomeLocationMaterialStepKey,

33Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

 fixed=m.mchArchived,},

 },

 buttons={

 {type=m.drPage_Button,

 text='Select',

 callback=function() return m.drWizardNext end,},

 {type=m.drPage_Button,

 text='Detail',

 callback=function() m.edit(m.material(mch.RecNo)) end,},

 },

 },

 },

 }

m.message('You selected '..m.material(mch.RecNo))

m.close(mch)

This is what the above definition will look like (using sample data):

All the usual Match-IT widgets operate as normal in GUILE constructed windows. The above examples are in
the configs\page_eg.lua file.

2.2.1 Window definition table structure

The complete page() and window definition syntax is:

ExitCode = m.page(Controls[,Preview])

The function returns an ExitCode of:

drWizardContinue
drWizardNext,
drWizardPrevious,
drWizardClosed or
drWizardError

to reflect the user button press that closed the window. It's a native Lua number.

34Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

If Preview is present and TRUE, the page is just shown and callbacks are not executed. This is intended to
allow the layout to be tested. When previewing, all hidden controls are shown and a message is shown in the
console when a callback would have been made. NIL is returned for any extra results the callbacks would've
returned.

The Controls table is used to construct the window and must contain keys as follows (the ()’d text is the data
type of the key value):

Window keys:

id(str) = the id to use in the GXW (so its size and position can be saved/restored), if not
given the window title is used.

title(str) = the title to use on the window (if not declared a default title of ‘Wizard’ is used)

name(str) = sub-title to use on the implied tab '0' (if not declared a default sub-title of ‘Make
Selections’ is used), a tab ‘0’ is implied for controls declared outside of a tab
structure (see below for a description of tabs)

hint(str) = the help to show for the window (if not declared no help button is shown for the
window)

timer(int) = if >0 create a timer event at this centi-seconds interval.
NB: The event generation timing is approximate, do not rely on the time interval.
Also, the presence of a timer inhibits the auto-next option for wizards (i.e. the
drAutoNext default is ignored)

showtabs(bool) = if true the tabs are exposed on a multi-tab window, default is to not show them

previous(bool) = if true show a ‘Back’ button (unless noback is asserted, this is implied if more than
1 tab is defined and no button is placed in the 'back' position).
This is the same as a button control with an implied 'back' callback and a 'text'
property of 'Back' and a position of 'back'. The 'back' implied callback selects the
previous tab if there is one, otherwise it closes the window with drWizardPrevious.

next(bool) = if true show a ‘Next’ button (unless nonext is asserted, this is implied if more than 1
tab is defined and no button is placed in the 'next' position).
This is the same as a button control with an implied 'next' callback and a 'text'
property of 'Next' and a position of 'next'. The 'next' implied callback selects the next
tab if there is one, otherwise it closes the window with drWizardNext.

finish(bool) = if true show a finish button (unless nonext is asserted, this is implied if only 0 or 1
tabs are defined and no button is placed in the 'next' position). This is the same as
a button control with an implied 'finish' callback and a 'text' property of 'Finish' and a
position of 'next'. The implied 'finish' callback closes the window with drWizardNext.

promptruler(str) = the default ruler to use for prompts, if not present uses: '-34p.[E].34d.[H]?' (see
Ruler format for a description of rulers)

buttonruler(str) = the default ruler to use for buttons, if not present uses: 'L10=R!'

stringruler(str) = the default ruler to use for strings, if not present uses: 'L$'

textruler(str) = the default ruler to use for text controls, if not present uses: '-L10$74=R'

groupruler(str) = the default ruler to use for groups, if not present uses: '34=10..L34=R4?'

nohint1(bool) = if true do not draw hint line 1 or the hints bounding box (any strings placed in
position drPage_HintLine1 are also ignored)

nohint2(bool) = if true do not draw hint line 2 or the hints bounding box (any strings placed in
position drPage_HintLine2 are also ignored)

nohints(bool) = if true it's a shortcut for nohint1=true, nohint2=true

nonext(bool) = if true do not draw a 'next' or 'finish' button (any buttons placed in position
drPage_Next are also ignored)

35Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

noback(bool) = if true do not draw a 'back' button (any buttons placed in position drPage_Back are
also ignored)

noclose(bool) = if true do not draw the default 'close' button (you can still place your own button in
position drPage_Close)

noconfirm(bool) = if true do not ask to confirm when closing the window, just do it (beware: unsaved
changes could be lost)

bare(bool) = if true it's a shortcut for nohints=true, nonext=true, noback=true,
noclose=true, noconfirm=true

callback(func) = if declared call this Lua function to process window events or child events not
explicitly handled by the child

vcr(table) = if declared and is a table, draws the standard 'vcr' form buttons (Back, Next, New,
Reset, Del, Save, Close), keys in the table are the names of the buttons (in lower
case) and their value is the callback function to call when that button is pressed,
the presence of this table implies noback, nonext, nohints and noclose, if a key
is not present the button performs its default behaviour when pressed, the default
behaviour is:

back - disabled

next - disabled

new - disabled

reset - perform a window.reset (this resets all values to as they were when
the window was opened)

del - disabled

save - disabled

close - if the window has been touched, presses save, otherwise closes the
window

prompts(table) = table of controls (the key name of ‘prompts’ is retained for legacy compatibility),
each control can contain keys as defined in Per Control keys: below.

Per Control keys:

id(str) = the id (prepended by the window id) to use in the ASF (so it can have security
associated with it), if not declared an id of the form ‘C#nnn’ is used, where ‘nnn’ is
the control number in the window. Ids are useful to refer to controls from the prop()
function (see later).

hide(bool) = true if the control is hidden, it exists but is not visible

readonly(bool) = true if the control is read-only, on a prompt this prevents its value from being
changed, on groups, buttons, strings and tabs it disables them (disabled controls
are visible but cannot be selected)

password(bool) = if true on a 'prompt' control, the value is displayed as asterisk (*) characters so user
entry cannot be overseen

nulls(bool) = if true on a ‘prompt’ control, the value is allowed to be blank

default(bool) = if true on a ‘button’ control, the button is the default button, pressing the shift-
Enter key presses the default button, behaviour is undefined if more than one
default button is specified

nochevron(bool) = if true on a 'prompt' control, a chevron (») is not prepended when the control has
been touched, if true on a save button, chevrons (»...«) are not placed around the
button text when any control on the window has been touched

36Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

type(int) = the type of the control, one of:

drPage_Prompt - an LType editor

drPage_Button - a button

drPage_String - a (small) text string - up to 256 characters

drPage_Text - a (large) text string, formatted as RTF - up to
2048 characters, the string must start with the
RTF header '{\rtf1' and finish with the footer '}', the
paragraph terminator is '\par'.

drPage_List - a container for a list and its action buttons, only 1
allowed per tab, maximum of 4 per window

drPage_Tab - a container for any of the above (all tabs are
peers), up to 9 tabs allowed per window

drPage_Group - a container for prompts, buttons and strings
(only), use a ruler to set its size and position
NB: Unlike other controls, a group does NOT
move the Y drawing position, its the window
designers responsibility to prevent overlaps/
overflows.

position(int) = where the control is to be placed, one of (see window layout):

drPage_First - on the front of the (next) line (forced for List and
List buttons)

drPage_InLine - follow on from the previous control (default for
strings)

drPage_Back - over the ‘Back’ button (ignored if noback is set),
only 1 allowed per tab, the last declared takes
precedence, if declared outside a tab, they are
global (show for all tabs), otherwise they only
show when the enclosing tab is selected, this
position is not available if a vcr table is present

drPage_Next - over the ‘Next’ button (ignored if nonext is set),
only 1 allowed per tab, the last declared takes
precedence, if declared outside a tab, they are
global, otherwise tab specific, this position is not
available if a vcr table is present

drPage_Save - over the ‘Save’ button, only 1 allowed per tab,
the last declared takes precedence, if declared
outside a tab, they are global, otherwise tab
specific, this position is not available if a vcr
table is present

drPage_Close - over the 'Close' button, only 1 allowed per tab,
the last declared takes precedence, if declared
outside a tab, they are global, otherwise tab
specific, this position is not available if a vcr
table is present

drPage_HintLine1 - over “hint line 1”, only 1 allowed per tab, the last
declared takes precedence, if declared outside a
tab, they are global, otherwise tab specific, this
position is not available if nohints is set

37Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

drPage_HintLine2 - over “hint line 2”, only 1 allowed per tab, the last
declared takes precedence, if declared outside a
tab, they are global, otherwise tab specific, this
position is not available if nohints is set

drPage_VCRback - over the VCR 'Back' button, this position is only
available if the vcr table is present

drPage_VCRnext - over the VCR 'Next' button, this position is only
available if the vcr table is present

drPage_VCRnew - over the VCR 'New' button, this position is only
available if the vcr table is present

drPage_VCRreset - over the VCR 'Reset' button, this position is only
available if the vcr table is present

drPage_VCRdel - over the VCR 'Del' button, this position is only
available if the vcr table is present

drPage_VCRsave - over the VCR 'Save' button, this position is only
available if the vcr table is present

drPage_VCRclose - over the VCR 'Close' button, this position is only
available if the vcr table is present

ask(bool) = if present and true same as type = drPage_Prompt (the type key must be nil) (for
legacy 'page' compatibility)

show(bool) = if present and true same as type = drPage_Prompt + readonly=true (the type key
must be nil) (for legacy 'page' compatibility)

option(bool) = if present and true same as type = drPage_Prompt + nulls=true (the type key must
be nil) (for legacy 'page' compatibility)

text(str) = the visible text for the control (including any hot key designation preceded by an
ampersand, e.g. ‘&Save’ makes the ‘S’ a hot-key, pressing the Alt key and the hot-
key together will select the control). For a prompt, if text is not declared the default
is 'Select a <typename>' where <typename> is the name of the LType for the
prompt. For a group, if text is not declared the group is drawn without a box.

hint(str) = the What’s This? help for the control. For a prompt, the first line becomes its tool-
tip, pressing the [?] button shows the help. The [?] is not dawn if there is no

help.

name(str) = the sub-title to use on a tab or list (if not declared, no sub-title is shown)

callback(func) = if declared call this Lua function to process the controls events, otherwise use the
callback associated with its parent (see below)

value(LType) = for a prompt, it's the LType object to be shown/edited, the presence of this key
when type is not declared implies a drPage_Prompt control

NB: While the window is open, this value must NOT be changed by directly
assigning to it, it should only be changed by using the assign operation. Failure to
observe this rule will result in memory corruption and undefined behaviour (which will
be bad).

alias(str) = for a prompt, it refers to the id of another prompt whose value is to be used here, it
must be declared before the alias, if the id is not unique in the window, which one is
referenced is not defined, this provides an alternative prompt to view/edit the same
value

context(LType) = for a prompt, it's the context to pass to the LType editor. Not all LType editors
expect a context, for those that don't this property is ignored. For those that do, this
property if present must be of the LType expected or an equivalent LType. A context

38Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

is used by an LType editor to give it a hint when there are choices, for example with
the ClassMat LType the hint specifies the material class to select from when an
example material is not given.

ruler(str) = for a group, prompt, button or string, this defines how to render the control elements
(see below)

tab(table) = for a tab, it's a table of controls to place in the tab, controls outside of any tab are
placed in the implied tab '0', tabs cannot be nested, i.e. a tab cannot be placed
inside another tab, the presence of this key when type is not declared implies a
drPage_Tab control

file(file) = on a list, the file the list is looking at (it must be open), it may be a physical file or a
virtual file

keys(table) = on a list, a table of keys the file is being browsed on, when more than 1 key is
declared, a key change tab sheet is shown, if only 1 key is declared, no key
change sheet is shown, if not declared the RecNoKey is implied (i.e. key number
1), on a virtual file only 1 key is allowed and key must be a field number in the file
that has unique values or 0 for physical order, each entry must be a table with the
following keys:

key(key) = a key number the file can be browsed on

text(str) = text to show on the key tab (including its hot-key designation)

id(str) = the key id, if omitted, use the text, useful to reference the key
via the prop() function (see below)

fixed(field) = the field number the key is fixed on or 0 if not fixed, the key
must already be loaded in the file buffer

callback(func) = if declared call this Lua function to process the keys events,
otherwise use the callback associated with its parent (see
below)

paged(bool) = on a list, true if the list is page loaded, otherwise it's fully loaded (default is paged)

vsize(int) = on a list, the minimum number of rows to show, if not declared 16 is used (which is
enough to fill the default tab height), the minimum is 4

bsize(int) = on a list, the size of the button area to reserve to its right in Dialog Units (a Dialog
Unit, or DU, is approximately a quarter of a character width), the default is the
default button width (40 DU) when there are buttons or 0 when not

buttons(table) = on a list, a table of list buttons, each entry must be a button control, these are
drawn vertically to the right of the main list browse area, buttons may also be
grouped using a group control

columns(bool) = on a list, if true individual columns in a row are selectable in the list, otherwise only
the whole row is selectable

group(table) = on a group, a table of prompt, button and string controls in the group, the presence
of this key when type is not declared implies a drPage_Group control

role(int) = as a list button on a list with multi-select enabled, this sets the function of the
button in a multi-select context, up to 4 such buttons can be defined, omitted
buttons just remove that action, the role of each must be one of:

drPage_SelectAll = select all records in the browse that pass whatever
filters are prevalent

drPage_SelectNone = clear all selections

drPage_SelectInclude = include the currently highlighted line in the selected list

drPage_SelectExclude = exclude the currently highlighted line from the selected

39Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

list

selected(RecNoQ) = on a list with multi-select enabled, use this RecNoQ instead of creating one to hold
the selections (use NewQ to create it, the type must be compatible with the file
being browsed), ignored if multi-select not enabled, default is to auto create a
RecNoQ but it will be destroyed when the window closes, so set your own if you
need it beyond that scope

list(table) = on a list, a list of fields to be shown in the list, the presence of this key when type is
not declared implies a drPage_List control, each field is a table with the following
keys:

name(str) = the column name, if omitted use the field name of the data from
the file

role(int) = if present and set to drPage_SelectMarker it turns on the multi-
select facility and marks this field as the 'include marker', it
must be a calculated field of type Str, any callbacks on this are
ignored

width(int) = the initial width of the column in characters (users can change
this is in the usual way by dragging the column edge), if
omitted the width of the column name is used

id(str) = the id (prepended by the window id) to use in the ASF (so it
can have security associated with it), if omitted use the name

data(str) = the field name in the file to show, it's formatted according to its
LType, if blank the field is calculated via a callback, for physical
files, this may refer to a physical field or a qualifier on the file
being browsed

ltype(type) = when the column is calculated, the LType of the result
expected from the callback

callback(func) = if declared call this Lua function to process the columns
events, otherwise use the callback associated with its parent
(see below)

hint(str) = the What’s This? help for the column

If none of type, ask, show, option is given but value is given, then type = drPage_Prompt is assumed.

If none of type, ask, show, option is given but list is given, then type = drPage_List is assumed.

If none of type, ask, show, option is given but tab is given, then type = drPage_Tab is assumed.

If none of type, ask , show, option is given but group is given, then type = drPage_Group is assumed.

If more than one of these is given, the behaviour is undefined.

2.2.2 Ruler format

A 'ruler' can be used to control how the elements of a control are drawn.

A ruler is a string with the following syntax (in BNF notation):

ruler ::= [position]{element}[height]

position ::= '+' | '-'

element ::= gap | prompt | ellipsis | data | help | edge | nudge

gap ::= {[count] ('.' | '=')}

prompt ::= {[count] 'p'} --prompts only

40Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

ellipsis ::= '[E]' --prompts only

data ::= {[count] 'd'} --prompts only

help ::= '[H]' --prompts only

edge ::= 'L' | 'R' --strings, text and buttons only

nudge ::= [count] '<' | '>'

height ::= {[count] (':' | '?' | '$' | '!')}

count ::= {‘0’..’9’}

Where []'s indicate optional items, {}'s indicate replicated items, ()'s represents grouping, |’s represent a choice
and ‘’s represent literal text.

The items have the following meaning:

position: a leading '+' means this control is to be drawn in-line, to the right of whatever was drawn
last (same as drPage_InLine)
a leading '-' means draw the control on the front of the (next) line (same as drPage_First).
The ruler position overrides the 'position' property of the control.

gap: each '.' moves the drawing position 1 DU to the right (a DU is approximately 1/4 of a
character width)
each '=' moves the drawing position 4 DU to the right (a DU is approximately 1/4 of a
character width)

prompt: each 'p' represents 1 character position to allow for the prompt text (default is 34), omitted
means no prompt text
if a prompt precedes the data entry field, it is right-aligned, otherwise it is left-aligned

ellipsis: represents the ellipsis button [...] or [```], omitted means no ellipsis button, the button
occupies 10 DU

data: each 'd' represents 1 character position to allow for the data entry field (default is 34),
omitted means no data entry field

help: represents the help button [?], omitted means no help button, the button occupies 13 DU

edge: an 'L' means place the left edge of the control here
an 'R' means place the right edge of the control here,
the difference between the L and the R is the control width, the absence of an 'R' means
the width floats (only meaningful on string controls)

nudge: < means draw the control 1 DU higher than normal
> means draw the control 1 DU lower than normal

height: each ':' represents 1 DU (a DU is approximately 1/8 of a character height),
each '?' represents the default height of a prompt control,
each '$' represents the default height of a string control,
each '!' represents the default height of a button control.
For string controls, this sets the height of the text as well as the vertical space to the
next line of controls, setting a multi-line height and a width for a string control will cause
the string text to fold across multiple lines.
For group controls, this sets the height of the group but does NOT affect the vertical
space to the next line of controls.
For all other control types, it sets the vertical space to the next line of controls.

count: a decimal number that replicates the succeeding character that many times, e.g. '10p' is
the same as 'pppppppppp'

The default ruler for a prompt control is: '-34p.[E].34d.[H]?'

The default ruler for a button control is: 'L10=R!'

41Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

The default ruler for a string control is: 'L$'

The default ruler for a text controls is: '-L10$74=R'

The default ruler for a group control is : '34=10..L34=R4?'

Space characters in a ruler are ignored and can be used to visually separate elements.

2.2.3 Callback Interface

Callbacks are the mechanism by which the calling script can be notified of actions performed by the user of
the window. They are ordinary Lua functions.

The callback functions are given a single parameter of the control/window table receiving an event. The event ID
is lodged in control.event and identifies what has caused the callback to be made and the control/window table
identifies the control it applies to, or the window if it's a non-control specific event.

If a callback is not declared for a control, the callback in its parent is called, if that is not declared, the parents
parent is called, this process is repeated until the window callback is reached, if that is not present, no
callback is called.

The callbacks return an exit code, the codes are the same as the page() function, anything other than
drWizardContinue causes the page() function to terminate with the exit code returned by the callback.

If no exit code is returned, drWizardContinue is assumed.

The callbacks are called using a protected call (see pcall in the Lua manual), so errors are caught by the
page() function, allowing it to gracefully shut-down the window before propagating the error upwards.

The column fill callback returns its result (of an appropriate LType) as well as an exit code. E.g.: return
result,exitcode (or just return result and an implied drWizardContinue). If no result is returned, a NIL
value is used.

The event ID is one of:

drPage_WindowOpened - the window is open and has been shown

drPage_AllowWindowClose - the user has asked that the window be closed, callbacks
should return drWizardContinue to allow it or anything else
to dis-allow it (except drWizardError)

drPage_WindowClosing - the window is about to be closed

drPage_WindowTimer - the window timer time has elapsed

drPage_TabSelected - a new tab has been selected

drPage_ListSelected - a new list row or column has been selected

drPage_Changed - on a prompt: the value has been changed from its previous
value

otherwise: the control's touched status has been changed

drPage_Pressed - a button has been clicked or a list row/column was double
clicked

drPage_Popup - a button or a list row/column was right-clicked

drPage_FillColumn - notification that a calculated list column value is required

drPage_LoadFixedKey - notification that the fixed key elements in a list should be
set

drPage_FilterRecord - notification that a record is about to be added to a list,
return drWizardSkip to reject the record from the list

drPage_NoRecordsFound - notification that nothing passes the list filter

42Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

drPage_RecordsFound - notification that at least one record passes the list filter

drPage_AddSelection - notification that a multi-select list is about to add a
selection to the selected list, callbacks should return
drWizardContinue to allow it or anything else to dis-allow it
(except drWizardError)

drPage_RemoveSelection - notification that a multi-select list is about to remove a
selection from the selected list, callbacks should return
drWizardContinue to allow it or anything else to dis-allow it
(except drWizardError)

drPage_EmptySelections - notification that a multi-select list is about to clear all
selections from the selected list, callbacks should return
drWizardContinue to allow it or anything else to dis-allow it
(except drWizardError)

The callback functions may manipulate the following properties of the window and its controls (via the prop()
function, see later):

Properties (read/write):

window.title

window.hint

window.timer

window.showtabs

control.value - the current value of a prompt, when writing, the type of the new
value must be the same as the original; also when writing,
changing the value will trigger the drPage_Changed event on that
control

control.hint

control.name - only valid on a tab and list control

control.text

control.hide

control.readonly - on drPage_Prompt controls this sets readonly, on other types it
disables them

control.paged - only valid on a list control

control.touched(bool) - reading returns the touched status of the control, for a prompt this
is true if the current value is different to its initial value, for other
control types it just echoes the last write to the property

writing to touched will trigger the drPage_Changed event if the
touched status changes as a result of that write

NB: writing to touched is not valid on a prompt control

key.key - only valid on a key of a list control, when writing, changes the key
being browsed to that given

key.fixed - only valid on a key of a list control, when writing, changes the
fixed field of the key

key.text - only valid on a key of a list control, when writing, changes the text
on the key tab (if one is being shown)

Note: In the above, the prefix (window. control. and key.) is purely descriptive. The actual property name used

43Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

in the prop() function should not include this prefix.

The following properties are also maintained and can be read from the callbacks:

Properties (read only):

window.type(int) = type of the control, on the window this will be drPage_Window

window.event(int) = the current event ID (see above)

window.control(table) = the control triggering the event, or nil if not a control event or it's
a pre-defined control (e.g the close and 'vcr' buttons)

window.touched(int) = the number of prompts that have been ‘touched’ in the window

window.context(str) = the callback source context of the current event, this will be one
of:

'callback' the callback is coming from a control in
the controls space or the window

'save' the callback is coming from the VCR save
button

'close' the callback is coming from the VCR
close button

'back' the callback is coming from the VCR back
button

'next' the callback is coming from the VCR next
button

'new' the callback is coming from the VCR new
button

'reset' the callback is coming from the VCR reset
button

'del' the callback is coming from the VCR del
button

control.orig(LType) = the original (un-touched) value of a prompt

control.old(LType) = the previous (before last change) value of a prompt

control.parent(table) = the control this one is contained within (listbutton-->list-->tab--
>window-->nil, etc.)

control.window(table) = the overall window table (useful to get at global properties)

control.row(int) = during a FillColumn or ListSelected or Pressed or Popup
event, the list row number active, the file buffer will be loaded
during the callback, or empty as appropriate

control.column(int) = during a FillColumn event, the list column number being filled

during a ListSelected or Pressed or Popup event, the list
column number selected

NB: The column number here is the ordinal position within the
list table, which may be different to the visual order if the user
has moved the columns about.

control.selected(RecNoQ) = the selection list actually being used (either auto created or given
in the list control definition) when multi-select is enabled on a list

control.key(table) = the list key currently active

44Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

control.id(str) = the id of the control (useful in prop())

control.event(int) = the current event ID (see above)

The following properties are write-only:

Properties (write only):

window.reset(bool) = set true to reset all prompts to their initial value (or whatever value
their source now contains) and clear all touched statii for all
controls

NB: this does NOT trigger control changed events

control.reset(bool) = if on a prompt, set true to reset to its initial value (or whatever
value its source now contains); on all control types, set true to
clear the touched status

NB: this does NOT trigger a control changed event

control.select(bool) = set true to change the input focus to this control or:

if a button, press it
if a tab, show it
if a key, make its key active

control.refresh(bool) = set true to force a list to refresh

2.2.4 Window Layout

Controls are drawn in the order defined in the controls table.

When there is no VCR table, the spatial layout follows this pattern:

45Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

When the VCR table is present the layout is modified to this:

The controls are drawn in the controls space unless overridden by their position. The controls space has a
fixed minimum size but will expand in both the X and Y direction to at least encompass the controls declared
within it. Within this space there is the notion of a drawing 'position'.

The drawing position is moved on for each control drawn according to its prevailing ruler.

The various control types render as (the code for these samples is installed with the system in configs
\page_eg.lua):

Prompt:

The width, relative position and presence of these elements can be controlled by a ruler. For the default ruler,
the width of a prompt is 136 DUs (34 characters), the [...] is 10, the entry area is 136 and the [?] is 13.

Button:

The width of a button can be controlled by a ruler. For the default ruler, the width is 40 DUs (10 characters).
Buttons follow each other in-line unless overridden by a position of drPage_First or the ruler.

String:

The default width of a string is whatever is required to encompass the characters within it, the default height is
a single line, strings follow each other in-line unless position 'first' or the ruler overrides it.

46Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

List:

The default size of a column is the size of its name. List buttons are aligned to the right of the list. The default
list width (including its buttons) is the whole window width. The where used tool is drawn for virtual files but is
disabled. The key change tabs are not drawn if only one key is declared for the list.

The 'X' column is present because the multi-select facility has been turned on, there is a helper function for this
- Selector() in the 'utils' library, use require('utils') to access it. Just put Selector('M') in the fields
table for the list to enable it and Selector('S') in its buttons table to provide the 'Select' button group. See
configs\page_eg.lua for a code example.

Group:

The size and position of the group is determined by its ruler. NB: The enclosing box is not drawn if the group
has no text.

It's the window designers responsibility to ensure the enclosed controls fit (although this does not matter if the
group has no text).

2.3 How do I access properties?

Properties of the window and the controls within it can be read and written from the callback functions in
response to user actions.

Static properties (i.e. those that do not change while the window is running) can be accessed directly using
the normal Lua table syntax.

Dynamic properties (i.e. those whose value may change) can be read or written using the prop() function. Its
syntax is:

Value = m.prop(Control,[id.]PropertyName) --read a property

m.prop(Control,[id.]PropertyName,Value) --write a property

47Scripting Guide GUILE

© 2019 Match-IT Limited04 October 2019

Control is a control as passed to a call back function from page() or a direct reference to any control table in
an open window.

Id is the id of the control to be affected, if omitted or empty, self is assumed. When present it must match the
'id' field of some control in the window or be one of these special values (must be lower case):

window.id to mean the window itself (e.g. 'mywindow' if the window.id property is
'mywindow')

'window' to mean the window itself

'tabthis' to mean the currently selected tab, i.e. 'self'

'tabback' to mean the first enabled/visible tab before the current one, or self if there
isn't one

'tabnext' to mean the first enabled/visible tab after the current one, or self if there isn't
one

No match throws an error. The id itself may not contain a '.' character. If there are multiple controls with the
same id, which one is found is undefined.

PropertyName is the name of a property to be accessed. If the name is unknown an error is thrown.

Value is the value to set or returned. Its type is implied by the property.

If this function is called when the page is not being shown, an error is thrown. If the page is being shown,
property changes are reflected in the page as well as in the control table(s).

When setting properties, the page is assumed to be the current Clarion TARGET (i.e. make sure you haven't
opened a monitor in the callback!).

See the Callback Interface description above for the properties available.

2.4 How do I test a user interface?

The m.page() function can take a second optional parameter that is a boolean. If this is ‘true’ then the page is
drawn but its behaviour is modified as follows:

1. No callbacks are performed, instead a message is sent to the console describing what callback would
have been called (so you can verify it will be called).

2. The ‘hide’ attribute is ignored, so all controls are visible (to allow size/position verification).
3. Any context where a callback would return a result (e.g. filling a calculated column), returns a NIL

instead.

Using this ‘preview’ parameter allows you to edit the window definition, test it and edit again very quickly. To
use this technique you must include the following line in your script before you call m.page():

require’console’

With the example window given in What is a User Interface? the console session would look like this after you
pressed the Select button:

A useful editor to use is Notepad++, this is free to download from http://notepad-plus.sourceforge.net/uk/
site.htm and has the useful feature of being able to ‘fold’ a Lua program file as well as syntax highlight it.

48Scripting Guide Accounting Software Interfaces

© 2019 Match-IT Limited04 October 2019

3 Accounting Software Interfaces

This topic describes how to write an interface to an accounting system. The accounts system interface is
written as a Lua script so you need to be be familiar with Lua and how it is integrated into Match-IT (see the
Lua topic). The description here is only concerned with the interaction between your script and Match-IT, it
does not cover the specifics of any particular accounting system. Refer to your accounting system
documentation for that.

The accounts system interface is responsible for the management of the information transfer from Match-IT to
the accounts system and vice versa. Information that can be sent to your accounts system is new customer
and supplier accounts, new stock codes, sales invoices, purchase invoices and stock movements. Information
that can be extracted from your accounts system is customer and supplier address changes and their current
credit position.

3.1 How is the interface organised?

There are four parts to the interface: the accounts centre record, a generic management script, the script you
will write to this specification and your accounting system.

The accounts centre record
This record is used to specify that you are going to use a scripted interface as described in this document. It
is also a 'holder' for other configuration information about the interface.

The list of available centres is accessable from the standard menu via Functions | Standing Data |
Accounts | Accounts Centres.

Press New to create a new centre, or Detail to edit an existing one.

To use the interface described in this document the accounts centre record must have the Generic accounts
system option checked (note: this is true even if the accounts system you are intending to use appears as
one of the other options - they are specific versions of the interface that you cannot change).

On the options tab, you must also specify the name of the script you are about to write. It's best to use a
name that describes the accounts system. Just enter a name with no path and no extension. Match-IT will
automatically add the appropriate path and extension as needed.

The Generic Management Script
This script works in the background and provides facilities to ease the writing of your interface, particularly
when the interface uses CSV files. Those facilities will be described elsewhere. The script is actually the file
accounts_interface.lua in your configs folder.

Your Script
This is the script you will write, using the Lua language, according to the rules described in this topic. The
script must be placed in your configs folder with the name you used in the accounts centre record and with a
.lua extension. You can use any text editor to create it (e.g. notepad or wordpad, but not a word processor).

This script is the 'glue' between Match-IT and your accounts system. It is the only place where knowledge of
your accounts system resides.

Your Accounting System
This is any accounting system that provides a means to import/export information. The simplest, and most
common, mechanism is CSV files; but anything is possible, including COM, direct DLL calls, direct database
access, etc.

49Scripting Guide Accounting Software Interfaces

© 2019 Match-IT Limited04 October 2019

3.2 How is the script organised?

Your script must implement whatever logic is necessary to export information to and import information from
your accounting system. The specifics of that are beyond this topic. To achieve the interface your script must
provide a number of standard functions with standard names. These functions are called by Match-IT when an
import or export action is required. The action required is implied by the function called. If your interface does
not provide an action, just do not implement that function and do not publish the capability (see GetCapability
below).

The full set of standard functions is given below. You must define the functions with EXACTLY the name given
below, including the case (e.g. Setup is not the same as setup). All these functions take as their first
parameter an object that provides access to the generic management facilities. This parameter is
conventionally named: Interface. Depending on the function, there may be other parameters as well. The
functions must return a numeric result code that is non-zero to indicate success, or 0 to indicate failure.
Alternatively, failure can be indicated by raising an error (by using the Lua error or assert functions). See
the Reference section for a description of the helper facilities available to these functions. Depending on the
function, a second string result can be returned.

function setup(Interface)
This is called when the user requests to setup the interface. It typically asks questions about the configuration
and saves the results as qualifiers attached to the accounts centre record. Such qualifiers are available as
properties of the interface (see Interface:GetProperties).

function exportCUS(Interface,RecNoQ)
This is called when the user has requested that new customer accounts be sent to your accounting system.
The RecNoQ parameter will contain a list of customer records to be exported. It is an object of type RecNoQ
containing entries of type Customer.

The function's responsibility is to traverse this list (using m.members), extract the required information and
export it. On a success return from this function all the entries in the RecNoQ are automatically tagged within
Match-IT as having been exported. If you do not want a particular record to be so tagged, remove it from the list
before returning (using m.exclude).

function exportSUP(Interface,RecNoQ)
This is the same as exportCUS except it is dealing with suppliers (Q entry type is Supplier).

function exportSI(Interface,RecNoQ)
This is called when the user has requested that new sales invoices be sent to your accounting system. The
RecNoQ parameter will contain a list of invoices to be exported. It's an object of type RecNoQ containing entries
of type SInvoice.

The function's responsibility is to traverse this list, collate all the invoice lines as appropriate (use
m.sdGetInvoiceLines to get the lines associated with any invoice), and export them.

On a success return from this function all the entries in the RecNoQ are automatically tagged within Match-IT
as having been exported. If you do not want a particular record to be so tagged, remove it from the list before
returning (using m.exclude).

function exportPI(Interface,RecNoQ)
This is the same as exportSI except it is dealing with purchase invoices (Q entry type is PInvoice, use
m.poGetInvoiceLines to get purchase invoice lines).

function importCUS(Interface)
This is called when the user has requested that customer account details be imported into Match-IT.

The function's responsibility is to extract all account information from your accounting system and either
create new records or update existing records in Match-IT as appropriate.

50Scripting Guide Accounting Software Interfaces

© 2019 Match-IT Limited04 October 2019

function importSUP(Interface)
This is the same as importCUS except the user has requested supplier account details.

function importCBAL(Interface)
This is called when the user has requested that customer credit balances be imported into Match-IT.

The function's responsibility is to extract all account credit information from your accounting system and
update records in Match-IT as appropriate.

function importSBAL(Interface)
This is the same as importCBAL except the user has requested supplier credit balances.

function exportMAT(Interface,RecNoQ)
This function is called when the user has requested that new stock codes be sent to your accounting system.
The RecNoQ parameter will contain a list of stock codes to be exported. It's an object of type RecNoQ containing
entries of type Material.

The function's responsibility is to traverse this list (using m.members), extract the required information and
export it. On a success return from this function all the entries in the RecNoQ are automatically tagged within
Match-IT as having been exported. If you do not want a particular record to be so tagged, remove it from the list
before returning (using m.exclude).

function exportMOVE(Interface,RecNoQ)
This function is called when the user has requested that new stock movements be sent to your accounting
system. The RecNoQ parameter will contain a list of stock movements to be exported. It's an object of type
RecNoQ containing entries of type Movement.

The function's responsibility is to traverse this list, extract the appropriate information from Match-IT and send
it to your accounting system. On a success return from this function all the entries in the RecNoQ are
automatically tagged within Match-IT as having been exported. If you do not want a particular record to be so
tagged, remove it from the list before returning (using m.exclude).

function MakeAccountRef(Interface,Ignore,CusSup)
This function is called when either Match-IT itself, or the user, wants to create a new account reference for a
customer or supplier record. The second parameter should be ignored. The third parameter may be missing or
it may be an empty string. If present and not empty, it will be a string that should be used to create an initial
code if possible. In either case the new account reference should be created to be consistent with the current
contents of the CSH file buffer (i.e. do not open the file, just reference its fields as m.csh.<field>).

The function's responsibility is to populate the csh.AccountRef field with a code that is unique and conforms
to the conventions of your accounting system.

function GetCapability(Interface)
This function is called when Match-IT needs to know what functions are implemented by the interface. The
function must return two results, a non-zero number (to indicate success) and a string of concatenated
capability codes. The capability codes have mnemonics of the form csAccCan…; they are all listed in the
Reference section under Constants. E.g. if your interface just implements the exporting of customer accounts
and sales invoices then the function return statement would look like this:

return 1,m.csAccCanExportCustomers..m.csAccCanExportSalesInvoices

function GetDescription(Interface)
This function is called when you ask to see the description of an interface from the Accounts Centre form.
The function must return two results, a non-zero number (to indicate success) and a string describing the
interface sufficiently for anyone probing the interfaces to recognise they have selected the one they want. A
typical response would be this:

51Scripting Guide Accounting Software Interfaces

© 2019 Match-IT Limited04 October 2019

return 1,’This interface exports information to the ’..

‘XXXX accounts package’

3.3 Interface Reference

Below is described all the facilities available through the Interface object passed to the functions listed in How
is the interface organised.

Useful Constants
m.yes = m.flag('Yes')

m.no = m.flag('No')

m.emptystr = m.str('')

m.null = m.void()

m.zero = m.real(0)

Interface:LoadDefaults(CusSup)
Load the customer or supplier specific defaults for the customer or supplier defined by CusSup.

Interface:UnLoadDefaults()
Un-load the last set of customer/supplier defaults loaded. This is automatic if the script terminates or returns.

v1,v2,…vN = Interface:GetProperties(p1,p2,…pN)
Get one or more properties associated with the accounts centre involved. The parameters p1,p2,…pN is an
arbitrary list of property names to get. The results v1,v2,…vN will be the value of those properties, they are
returned in the same order as they were requested.

Properties are either predefined as part of the accounts centre record (i.e. CSA fields) or user defined as
qualfiers. Attempting to get a property that is not defined will cause a user dialog to be shown to define it.

Each property can be specified in one of three ways:

· just as their name, e.g. 'version',
· as a table with a field=value pair, e.g. {version=6},
· as a table with name=field,value=expr, e.g. {name='version',value=6}

When a table is used, in either form, it can also have description=, validate= and ask= entries. If a value is
given it defines a default value to use if the property has not got a value or is undefined. If a 'description' entry is
given, it is used to describe the property if it is created due to it not being defined. If a 'validate' entry is given it
is a function to call to validate the property. The function is given the current value as a parameter and must
return nil if it is valid or a message describing what is wrong. If 'ask' is given and true, then the user is given a
dialog to set the properties. The user is always asked to define property values that do not exist or are invalid.

f1,f2,…,fN = Interface:Open(mode,fn1,fn2,…fnN)
Open a set of files, either in isolation or in a transaction. mode is either 'r' (read) or 'w' (write), if mode is 'w' the
files are opened in a transaction.

The file buffers are cleared and populated with defaults, so the caller can be sloppy.

fn1,fn2,…fnN specifies the files to be opened (e.g. m.csh, m.csc to open the customer/supplier file and the
contacts file).

f1,f2,…fN are open file handles for the files requested. They are returned in the same order as requested.

Interface:Load(file,object,watch)
Like m.load but aborts on error (so you don't have to worry about catching errors).

CusSup = Interface:Add(type)
Add the CSH currently in the file buffer. The type specifies a customer (m.csTypeCustomer) or a supplier
(m.csTypeSupplier) is being added. If no type is given, then the same as last time is used. If csh.CusSup in

52Scripting Guide Accounting Software Interfaces

© 2019 Match-IT Limited04 October 2019

the file buffer clashes with an existing record, it will be changed to a non-clashing value.

It returns the CusSup created on success or aborts on failure.

Contact = Interface:AddCon(type,CusSup,rank,nodef)
Add the CSC currently in the file buffer and create a default contact unless directed not to (by setting nodef to
true). If no type, CusSup or rank is given, then that of the last add/get/put is used.

It returns the Contact created on success, nil if the contact already exists or aborts on failure.

CusSup = Interface:Get(type,AccountRef)
Attempt to get a cus/sup account via the given AccountRef. Set type to m.csTypeCustomer to get a
customer or m.csTypeSupplier to get a supplier.

It returns the CusSup found if it exists or nil if it doesn't.

Contact = Interface:GetCon(type,CusSup,rank)
Attempt to get a contact for the given CusSup via the given rank. Set type to m.csTypeCustomer to get a
customer contact or m.csTypeSupplier to get a supplier contact. If no type, CusSup or rank is given, then
that of the last add/get/put is used.

It returns the Contact if exists or nil if it doesn't.

CusSup = Interface:Put()
Put the current CSH file buffer into the file.It returns the CusSup on success or aborts on failure.

Contact = Interface:PutCon()
Put the current CSC file buffer into the file.

It returns the Contact on success or aborts on failure.

Interface:Close()
Close all files and transactions previously opened with Interface:Open.

If a transaction is closed and it fails, the script aborts.

String = Interface:Join(lines)
Joins strings together as lines with trailing spaces clipped.

lines is a table containing the strings to be joined. Each entry is concatenated with the previous with a
newline sequence. Trailing spaces from each entry are removed.

ExportTable =
Interface:NewExportTable(Name,Description,Separator)
Create a new table to be exported. This creates an object with name 'Name' to encapsulate the information to
be exported. The 'Description' is purely for documentation purposes. The ‘Separator’ specifies the field
separator character to be used in the output CSV file. If omitted, the default is a comma. It should be a single
character.

The object created here implements various helper functions for use by the interface specific code. A property
in the interface of the table name must exist, and be populated, that is a PathNam unless the given table name
starts with '@' in which case it's interpreted as the file name itself.

If the interface table name property does not exist, the user is asked to define it (see
Interface:GetProperties).

See Export Table Reference, for the functions available through this object.

53Scripting Guide Accounting Software Interfaces

© 2019 Match-IT Limited04 October 2019

ImportTable = Interface:NewImportTable(Name,Description)
Create a new table to be imported. This creates an object with name 'Name' to encapsulate the control of the
import process. The 'Description' is purely for documentation purposes.

The object created here implements various helper functions for use by the interface specific code. A property
in the interface of the table name must exist, and be populated, that is a PathNam unless the given table name
starts with '@' in which case it's interpreted as the file name itself.

If the interface table name property does not exist, the user is asked to defined it (see
Interface:GetProperties).

See Import Table Reference, for the functions available through this object.

3.4 Export Table Reference

The Interface:NewExportTable function creates an object that provides facilities to assist in the export of
information to CSV files. These facilities are described below.

ExportTable:field(Name,Format,Default,Description)
Define a field in the export table. Fields should be defined in the order they must appear in the output file.

Name is the name of the field. Format is how to render it, options are anything acceptable to
string.format(). Default is the value to export when not explicitly set in the record, it's subjected to the
formatting defined above. Description is purely for documentation purposes.

A field Name can be in any of the following forms:

· group.name[index]

· group.name

· name[index]

· name

Where index is numeric. This is useful when the output record consists of sub-records and arrays.

If the Format is nil or ‘’, it means this field should be skipped in the output. This is useful in conjunction with
variant records (see fieldis below) when each variant has a different number of output fields. Just add
‘skipped’ fields to make each variant have the same number of field definitions.

Each field must be defined before the first call to ExportTable:add()

FieldNumber = ExportTable: fieldis(number)
Set and/or get the last field number. This is used to create field definition variants, like this:

mark = fieldis() --get field number of last field

field('f1')

field{'f2')

fieldis(mark) --reset to prior to 'f1' field#

field('f3') --'f3' is now an alternative definition for the same field# as 'f1'

field('f4') --'f4' is now an alternative definition for the same field# as 'f2'

It's the caller's responsibility to ensure everything lines up appropriately.

ExportTable:add(Fields[,Raw])
Add the given field buffer to the output record list for the table. Fields must be a table of field name/value
pairs, where each field name must have been defined by a prior call to ExportTable:field(). Name/value
pairs in Fields but not defined by a :field() call are ignored. A field defined but not present is populated
with its default value.

If Raw is present and true the given fields are added to the output as is, otherwise they will be quoted if they
contain embedded quotes or separators.

54Scripting Guide Accounting Software Interfaces

© 2019 Match-IT Limited04 October 2019

3.5 Import Table Reference

The Interface:NewImportTable function creates an object that provides facilities to assist in the import of
information from CSV files. These facilities are described below.

ImportTable:field(Name,Format,Default,Description)
Define a field in the import table. Fields should be defined in the order they must appear in the input file. Name
is the name of the field. Format is how to render default values, options are anything acceptable to
string.format(). Default is the value to assume when not explicitly set in the record, it's subjected to the
formatting defined above. Description is purely for documentation purposes. Each field must be defined
before the first call to ImportTable:records()

ImportTable:records()
This is an iterator for the input CSV file. Use it in a for loop like this:

for record in table:records() do

… whatever

end

3.6 Example

A complete and real example of a script that conforms to the specifications described in this topic can be
found in your configs folder as SageL50.lua. This script implements an interface to the Sage Line 50
accounting system using CSV files.

55Scripting Guide Extending Report Files

© 2019 Match-IT Limited04 October 2019

4 Extending Report Files

The term Report File in this context is referring to the files that contain a relevant snapshot of the Match-IT
databases for the purposes of printing something. Such files are also referred to as 'xTx' (pronounced ex-tee-
ex) files because their three letter acronym has a 'T' as the middle character. Whenever a document is needed
to be printed a set of xTx records is created containing relevant information, for example for a sales order
confirmation an STH record is created for the header information and an STL record for each line in the order.
These xTx names are what you can see in the variables in the document designer, and expanding them shows
all the fields available.

Although the set of fields available in the xTx records is extensive, it does not cover everything possible.
However, should you find you want to print something that is not available in the xTx record, there is a
mechanism that allows you to add it.

This section describes that mechanism.

Qualifiers
The mechanism exploits the qualifier system within Match-IT. This provides for the ability to add arbitrary fields
of your own to almost any Match-IT database. In this context the fields are going to be added to the xTx
records.

Steps
To use the mechanism there are four steps that must be completed:

1. Add the qualifier names to the xTx records
2. Write a Lua script to create qualifiers
3. Tell Match-IT where that script is
4. Modify the report paper design to use your new fields

Step 1 - add qualifier names
In order that your extra fields are visible to the document designer they must be added as a vocabulary to the
appropriate xTx record. This can either be done using the qaMakeField 'drop' in some setup script, or
manually via the Qualifier Maintenance form. The file the qualifier is to be attached to, the name of the
qualifier and the type of information it will hold must be specified. Giving it a default value is not necessary.

The following is an example of creating the vocabulary using the qaMakeField 'drop' within a script:

m.qaMakeField(m.wth,'MyClassQualifier',m.Kode ,m.pack(m.void()))

This creates a field called MyClassQualiifer that will contain a Kode and attaches it to the WTH file.

This is what the form would look like to enter the same qualifier using the manual method:

56Scripting Guide Extending Report Files

© 2019 Match-IT Limited04 October 2019

Step 2 - write the Lua script
The Lua script to perform the extension must consist of functions with names of the form qualifyTLA, where
TLA is the label of the report file that is to be extended, e.g. qualifyWTH to extend the WTH file. The existence
of the function enables the facility for that file. The function is passed eight parameters when it is called, in
order they are:

dFile The file number of the destination file. This will be the same as the TLA in the
functions name. The type is a FileNo.

dRec The record number in that file. This is the actual xTx record that is being extended.
This is of type RecNo.

sFile The file number of the file that is providing the source for qualifiers being added. The
type is a FileNo.

sRec The record of the source file for qualifiers being added. This will be an object of the
type implied by sFile. This means fields in the record can be accessed as
sRec.Field

cFile The 'context' file for the source. The context file is dependant on the source. For
example, the context for the SOL (Sales Order Line) is the MCH (Material Catalogue
Header) of the product being ordered in that line. This parameter is of type FileNo.

cRec The record of the context file if there is one, else it's 0. This will be an object of the
type implied by cFile. This means fields in the record can be accessed as
cRec.Field

PrintOnly A boolean that will be true if the qualifier set is being produced for printing purposes.

VariantPrefix This is the variant prefix that is prevailing for the qualifier set being created. This is
normally blank when printing.

The function is called whenever qualifiers are being set for the 'TLA' file.

The function must behave as a Lua coroutine, where it 'yields' back to Match-IT for each qualifier it wants to
add and then terminates. To add a qualifier, the function populates the QAT file buffer with a record, then yields.
It must just populate the QAT file buffer directly, it must not open it. To add fields to the file buffer use assign

57Scripting Guide Extending Report Files

© 2019 Match-IT Limited04 October 2019

statements of the form:

m.qat.field = value

Where field is a valid field name in the QAT file, and value is some expression to assign to that field. As a
minimum, the Qualifier, Type, Value and IsPrinted fields should be populated.

To yield back to Match-IT use the Lua coroutine.yield function with no parameters. To terminate, just
return from the function. The proforma loop for the function is:

function qualifyTLA(dFile,dRec,sFile,sRec,cFile,cRec,PrintOnly,VariantPrefix)

--initialise

while NotDone do

--build record in the QAT

coroutine.yield()

end

end

Step 3 - set the script name default
To tell Match-IT where the script resides you must set the Qualifier extender Lua script default (in the
QA class) to the file you created in step 2.

Step 4 - modify the paper design
Your new fields will appear in the designer as qualifiers attached to the xTx record. Using them is the same as
any other field and is fully described in the Document Design Tutorial manual.

Example
There is a very simple (and silly) example script installed with Match-IT that adds a few fields to the WTH record
(works order header). It's located in configs\qualify.lua

58Scripting Guide Product Configurators

© 2019 Match-IT Limited04 October 2019

5 Product Configurators

This topic describes how to set-up and use Product Configurators in Match-IT. A Product Configurator is a set
of 'rules' that describe a product family. They can be useful in situations where you make a range of very
similar products that can be tailored to suit a particular requirement. You provide the 'specification', or options,
required by answering questions, then the Product Configurator creates a product structure according to the
rules and options selected.

The questions asked and the rules are all defined by you when you design the Product Configurator. Product
Configurator design is a complex task that requires in depth knowledge of the product family and the
capabilities of Match-IT. The execution of the Product Configurator, i.e. actually creating a product structure, is
a very simple task that can be performed by anyone.

5.1 What is a Product Configurator?

A Product Configurator is a set of 'rules' that describe a product family. The rules can include questions that
are asked to get options and specification elements. The answers to the questions are used to construct
product structures that are appropriate to the answers. For example, if a question asks 'What colour?' then the
product structure could be constructed to call up the appropriate colour paint.

Product Configurators are just a short-cut to creating product structures. The end result is the same as if you
did it by hand.

5.2 Why would I use a Product Configurator?

Product Configurators are useful if you make a range of products that are made to order with the options and
specifications selected or defined by your customers. In this situation a product configurator could construct
the product structure for you much faster, and with less effort, than if you did it yourself. The product
configurators can also 'capture' any specialist production knowledge. This means the production knowledge is
not needed by the person creating the product structure through a product configurator.

There is significant thought and planning required to design a product configurator. This means they are not
useful for creating product structures that are fixed with no variants.

5.3 What happens when I run a product configurator?

Running a product configurator is rather like answering a few questions from an expert. The expert then takes
your answers and creates what you want from them. A typical session has three parts:

In part 1, you are prompted to supply answers to some questions.

In part 2, the product configurator analyses your answers and, in conjunction with the 'rules' built into the
product configurator, creates all the information needed for the product structure. If you wish, you can review
this information prior to creating the product structure.

In part 3, the information created in part 2 is translated into an equivalent product structure. Once this is done,
the product structure appears in your catalogue just as if you had entered it manually. The manufacturing cost
of the structure would also have been calculated for you.

5.4 How do I run a product configurator?

There are a number of ways to get to the product configurator system. For example, the Design button on the

list of lines for an enquiry or sales order will take you there. There is also a Design button on the materials

catalogue list, and in many other places too.

To run a product configurator: from the standard menu select Favourites | Functions | Standing Data |
Scripts | Run Any Wizard. This will present you with a form that allows you to select the product

configurator you wish to run. Select the product configurator by pressing the Select Wizard then press

59Scripting Guide Product Configurators

© 2019 Match-IT Limited04 October 2019

Select to run it.

5.5 How do I design a product configurator?

Considerable thought and planning is required to design a product configurator. There are no hard and fast
rules about how to go about it. Treat the following as an initial guideline and topic list. If you wish, you can
commission your Match-IT supplier to help you. These are the major planning topics that should be considered
before you actually start defining the product configurator.

Identify the need
The first task is to realise that a product configurator will help you. A product configurator is likely to be useful
if you find yourself creating very similar product structures on a regular basis.

Identify product families
The next task is to identify how many product configurators you need. You could have one large product
configurator that covered all your requirement or a number of more specialised ones. Generally, creating
several specialised ones is more convenient because they will be smaller, simpler and run faster.

Identify the options
The only reason for using a product configurator is if you wish to design specific variants of something. This
implies choices. All the choices should be identified. These will becomes the questions that are asked when
the product configurator is run.

Identify the form of the product structure to be created
The result of running the product configurator will be a product structure. The form of the product structure will
dictate the form of the associated product configurator. You will find it helpful to draw the product structure you
intend to create for easy reference when defining the product configurator.

Manually create one to verify how it's done
You will also find it helps to create an example of the intended product manually first, noting what you did as
you go. Essentially, all a product configurator does is generate the entries you just made in the various forms
associated with creating a new product.

Identify the structure elements
Identify all the processes, resources, inspections, parts and services that are required for your product
structure. Identify where they all fit in on your diagram of the product structure.

Identify any codes required
Identify any new codes and code classes you require for your product configurator. You could use codes to
present the user with a limited set of named options in response to a question. For example, you could define
a colour code that only allows a response of a standard colour name.

Identify any qualifiers required
Identify any qualifiers you wish to associate with the elements of your product structure. Qualifiers are useful
to specialise something. For example, to define the surface finish of some material you might need.

Identify the structure records that must be created
All the elements of the product structure you are going to create with the product configurator are defined by
records in files. For example, a component that goes into a 'widget' is defined to the system by a record in the
mcb:Assembly Structure file. The product configurator will need to create all these records. Annotate you
diagram with the records to be created.

60Scripting Guide Product Configurators

© 2019 Match-IT Limited04 October 2019

Identify the field values that must be created
All the responses you made when you manually created an example of the product are defined to the system
by fields in records. For example, the class of the product is defined by the mch:Class field. The product
configurator will need to create all these fields. The files reference section in the on-line help system lists fields
that must be considered. Annotate you diagram with the fields to be created.

Identify any look-up tables required
You may find that some elements of your product structure are dependent on choices made elsewhere. For
example, which lathe you use to turn something may be dependent on the diameter of the 'widget' being
turned. In these kinds of situations you will find that using a look-up table might be helpful (see How do I define
a look-up table?). Note all these situations and what the dependencies are.

Identify the expressions required to create the field values
Many of the fields you identified earlier will need values that are calculated in some way from the choices
selected. For example, the amount of time it takes to drill the holes in a printed circuit board is dependent
(mostly) on how many holes have to be drilled. These calculations are defined by expressions. Note all the
expressions required to define all your field values.

Define symbolic names for the records and fields to be created
Many of the records and fields you identified earlier will need to be given names for the purposes of referencing
them within the product configurator. Inventing names will be one of the hardest parts of the overall design
task. It helps if you define a 'convention' that allows you to invent names quickly. One possibility is to use a
convention that mimics the hierarchy of the product and the fields involved. For example, if making a 'widget'
requires a quantity of 'gizmo' then the symbolic name for that field could be: WidgetGizmoQuantity (joining
capitalised words like this is a common programming convention).

5.6 How do I define a look-up table?

To define a new look-up table: from the standard menu select Favourites | Functions | Standing Data |
Scripts | Look-up Tables.

This will present you with a list of all the tables that you have already defined, if any. The First Dimension and
Second Dimension columns define the axes of the table, the actual table entries are defined by the Qualifiers.
To create a new table press the New button.

This will present you with a form that allows you to define the dimensions of the table. Each dimension is
defined by the value of something within the system. For example, a material type, a resource name, a code,

etc. You first define the type of the value. For dimension 1 you do this by pressing the Dimension 1 type

and selecting the type from the list, then you define the value by pressing the Dimension 1 value and
selecting the value you want. The process is the same for dimension 2.

If you wish to define a look-up table that only requires one dimension, then just set both dimension 1 and
dimension 2 to the same type and value.

Press Save to make your selection permanent. You define the value(s) of the table entry as qualifiers in the

usual way on the Items tab.

Note: You can also define look-up tables 'on-the-fly'. If you reference a table entry in your product configurator
that does not exist, then you will be given the opportunity to define it as it comes across it.

Example
Lets imagine you have an operation that involves wrapping something; and how long that operation takes is
dependent on which machine you use and what type of wrapping material you use.

To set-up a table to do this, you would define dimension 1 as the machine, dimension 2 as the material (or the
other way round) and an entry that defines how long it takes for that combination of machine and material. You

61Scripting Guide Product Configurators

© 2019 Match-IT Limited04 October 2019

would define similar entries for every combination of machine and material you wish to use.

You can either pre-set every combination, or you can do it 'on-the-fly'. If a product configurator references a
combination that you haven't defined you will be given the opportunity to define as it is encountered.

5.7 How do I define a product configurator?

You do this using a text editor to create a Lua script and installing it. One simple sentance for this author, one
big task for you!

